
Flow unfolding of multi-clock nets?

Giovanni Casu and G. Michele Pinna

Dipartimento di Matematica e Informatica, Università di Cagliari, Cagliari, Italy
giovanni.casu@unica.it, gmpinna@unica.it

Abstract. Unfoldings of nets are often related to event structures: each
execution of a net can be viewed as a configuration in the associated event
structure. This allows for a clear characterization of dependencies and
the conflicts between occurrences of transitions in the net. This relation
is somehow lost if more compact representations of the executions of nets
are considered, e.g. in trellises or merged processes of multi-clock nets. In
this paper we introduce an unfolding, called flow unfolding, that turns out
to be related to flow event structures, hence dependencies and conflict are
still represented. Furthermore, this unfolding gives also a more compact
representation of the executions of a multi-clock net, similarly to what
approaches like trellises or merged processes do.

1 Introduction

In recent years various new approaches have been proposed to unfold a Petri net.
Unfoldings are meant to give a representation of the computations of a Petri net
which can be used for several purposes, and among others we recall verification
of properties [1], diagnosis of systems [2] and obviously modeling of systems
computations [3]. The classical notion of unfolding as developed by Winskel in
[3] and Engelfriet in [4] suffers of the state explosion problem, as each event
in the unfolding has a unique history, thus possibly equivalent computations
leading to the same state in the original net are kept distinct. To overcome
this problem two main approaches have been pursued. One focuses in finding
a finite representation of an unfolding, e.g. with the notion of prefix [5]. The
other tries to identifies computations under suitable equivalences. To the latter
approach trellises and merged processes can be ascribed. Indeed, with different
motivations, both Fabre in [6] with his trellises and Khomenko, Kondratyev,
Koutny, and Vogler in [7] with their merged processes have proposed two different
ways to reduce dramatically the size of the unfolding of a safe net. In the first
proposal a safe net is considered as the product of finite state automata (hence
turned into a so called multi-clock net), and the unfolding of all the components
are then glued together by merging conditions which have the same heights (the
height of a condition being its history in the proper automata) and identifying
transitions representing correct synchronizations among the various automata;
whereas in the second proposal conditions representing the same occurrence of

?
Work partially supported by Aut. Region of Sardinia under grants LR 7/07 CRP-17285 (TRICS),
PIA 2010 “Social Glue”, by MIUR PRIN 2010-11 “Security Horizons”

2 G. Casu & G. M. Pinna

a token are identified and consequently transitions bearing the same label and
having the same preset and postset are merged.

The classical notion of unfolding has a clear and useful connection with an-
other central notion of concurrency theory, namely the one of event structure
[3]. Indeed, to the classical unfolding of a safe net it is possible to associate a
prime event structure and vice versa. Dependencies and conflicts among events
are represented faithfully in prime event structure, but some prices have to be
paid: possibly equivalent computations may be not equate, thus producing again
the explosion of the states space.

To be able to relate unfoldings to event based models a minimal requirement
should be verified: in the unfolding a transition can be executed only once in a
run (see [8], where configuration structures are introduced). It is worth to stress
that in some event based models dependencies and conflicts are not directly
available, but have to be deduced (e.g. in [8] or [9]). We observe that there is no
clear relation between trellises or merged processes and the more used notions of
event structures (where dependencies and conflicts are represented). For merged
process, even when restricted to multi-clock nets, there is no relation at all,
as they do not fulfil the minimal requirement stated above, namely that each
transition is executed only once in a run.

Boudol in [10] and with Castellani in [11] are among the first in proposing
another notion of event structure, where an event may have several histories,
namely flow event structures. Other variations of the basic concept of event
structures have been proposed subsequently, with various purposes which we will
not investigate here. We briefly recall among others: asymmetric event structure
of Baldan, Corradini and Montanari [12], or inhibitor event structure of Baldan,
Busi, Corradini and Pinna [13], bundle event structure of Langerak [14] or the
one associated to the Muller’s unfolding of Gunawardena [15]. The configurations
of flow event structures and those of prime event structures ordered by inclusion
form a prime algebraic domains. The notion of configuration in prime event
structure is extremely natural, and modeling the causal relation as a partial
order and stating the inheritance principle for the conflict relation (along the
causal relation) have played a major rôle in the success of prime event structures,
as they imply that each event has a unique history. In this respect flow event
structures are less manageable. On the one hand the dependency relation and
the conflict relation are required to be irreflexive the first one and symmetric
the second one, but no clear interaction among them is foreseen. On the other
hand the notion of configuration is much more complicated with respect to the
one of prime event structure because it is on this level that a choice should be
done among the various histories of an event: one which is compatible with the
histories of the other events have to be selected. We observe that prime event
structures can be seen as special cases of any other kind of event structures.

In this paper we propose a notion, flow unravel net, where a dependency
relation and a conflict relation are easily defined, but many equivalent runs may
be equated, similarly to merged processes or trellises. This is obtained by adding
suitable control places. The notion of flow unravel net is a proper extension of

Flow unfolding of multi-clock nets 3

that of causal net, as each causal net can be turned into a flow unravel net.
Control places are used to define a relation of dependency among transitions
of the net: a transition depends on another if in the preset of the transition
there is a control place that is in the postset of the other. A conflict relation is
instead defined stating an immediate conflict among two transitions that share
an internal place i.e. a place which is not a control one, and that represents
a shared resource, and this conflict is inherited along the dependency up to a
certain point, which is identified as the point where two alternative histories
determine the same future evolution.

Flow unravel nets are the basis to develop the notion of flow unfolding. We,
similarly to what does Fabre in [6], unfold a multi-clock net, as the information
provided by the various components of a multi-clock net eases the construction.
The unfolding algorithm of Esparza, Römer and Vogler in [21], without cutoffs,
can be easily adapted to our purposes, once it is understood when, in the con-
struction, two elements are the same (both for places and transitions). In [16]
some notions of equivalence among transitions based of the neighborhoods of
transitions have been proposed. Here we adapt these equivalence to our pur-
poses: two transitions are equivalent if they have compatible histories and have
the same future evolution. The result of the unfolding algorithm of a multi-clock
net N is a flow unravel net and a mapping that folds the flow unravel net onto
N . It is worth to observe that each safe net can be turned into a multi-clock net
having the same behaviour, i.e. the same firing sequences and with a (step) case
graph isomorphic to the one of the original safe net.

The paper is organized as follows: in the next section we recall all the needed
definitions concerning nets and we define what an unravel net and a flow unravel
net are. In Section 3 we show how prime event structures and classical unfoldings
are related as well as flow unravel nets and flow event structures. In Section 4
we present our unfolding algorithm and we show that indeed the algorithm gives
a flow unravel net (hence a flow event structure can be associated to it). In
Section 5 we compare our construction with trellises and merged process. Some
conclusions are drawn in the final section.

2 Nets

Notations: With N we denote the set of natural numbers and with N+ the set of
natural numbers without zero, i.e., N \ {0}. Let X be a set, with |X| we denote
the cardinality of the set. Let A be a set, a multiset of A is a function m : A→ N.
The set of multisets of A is denoted by µA. The usual operations on multisets,
like multiset union + or multiset difference −, are used. We write m ≤ m′ if
m(a) ≤ m′(a) for all a ∈ A. If m ∈ µA, we denote by [[m]] the multiset defined as
[[m]](a) = 1 if m(a) > 0 and [[m]](a) = 0 otherwise; sometimes we will use [[m]] as
the denotation of the subset {a ∈ A | [[m]](a) = 1} of A. Finally, when a multiset
m of A is a set, i.e. m = [[m]], we write a ∈ m to denote that m(a) 6= 0, namely
that a ∈ [[m]], and often confuse the multi set m with the set {a ∈ A | m(a) 6= 0}.

4 G. Casu & G. M. Pinna

Given an alphabet Σ, with Σ∗ we denote as usual the set of words on Σ
with ε as the empty word. The length of a word is defined as usual and, with
abuse of notation, it is denoted with | · |. Given a word w and a subset A of the
alphabet, proj (w,A) is the word obtained deleting all occurrences of symbols
not belonging to A.

Given a partial order (D,v), with bdc we denote the set {d′ ∈ D | d′ v d}.

Nets: We first review the notions of Petri net and of the token game.

Definition 1. A Petri net is a 4-tuple N = 〈S, T, F,m〉, where S is a set of
places and T is a set of transitions (with S ∩T = ∅), F : (S×T)∪ (T ×S)→ N
is the flow mapping, and m ∈ µS is called the initial marking.

Subscripts or superscript on the net name carry over the names of the net compo-
nents. Given an x ∈ T , with •x we denote the multiset on S defined as •x(s) = 1
if F (s, x) and 0 otherwise, and with x• we denote the multiset on S defined as
x•(s) = 1 if F (x, s) and 0 otherwise. Similarly, given an y ∈ S, with •y and y•

we denote the multisets on T defined respectively as •y(t) = 1 if F (y, t) and
0 otherwise, and x•(t) = 1 if F (t, y) and 0 otherwise. For x ∈ S ∪ T , •x and
x• are called the preset and postset respectively of x. Given a finite multiset of
transitions A ∈ µT we write •A for

∑
t∈T A(t) · •t and A• for

∑
t∈T A(t) ·t• .

A net 〈S, T, F,m〉 is as usual graphically represented as a bipartite directed
graph where the nodes are the places and the transitions, and where an arc
connects a place s to a transition t iff F (s, t) > 0 and an arc connects a transition
t to a place s iff F (t, s) > 0. We assume that all nets we consider are such that
∀t ∈ T •t and t• are not empty.

A finite multiset of transitions A is enabled at a marking m, if m contains
the pre-set of A. Formally, a finite multiset A ∈ µT is enabled at m if •A ≤ m.
In this case, to indicate that the execution of A in m produces the new marking
m′ = m − •A + A• we write m [A〉m′. Steps and firing sequences, as well as
reachable markings, are defined in the usual way. The set of reachable markings
of a net N is denoted with MN . Each reachable marking can be obviously
reached with a firing sequence where just a transition is executed at each step.
Given a firing sequence m [A1〉m1 · · ·mn−1 [An〉mn, we say that mn it reached
by

∑n
i=1Ai.

A net is said safe whenever its places hold at most one token in all possible
evolutions. Formally:

Definition 2. A net N = 〈S, T, F,m〉 is said safe in the case that F : (S×T)∪
(T × S)→ {0, 1} and each marking m ∈MN is such that m = [[m]].

Subnet: A subnet of a net is a net obtained restricting places and transitions,
and correspondingly also the multirelation F and the initial marking. We can
restrict either the transitions or the places.

Definition 3. Let N = 〈S, T, F,m〉 be a Petri net and let T ′ ⊆ T . Then the
subnet generated by T ′ is the net N |T ′ = 〈S′, T ′, F ′,m′〉, where S′ = {s ∈

Flow unfolding of multi-clock nets 5

S | F (t, s) > 0 or F (s, t) > 0 for t ∈ T ′} ∪ {s ∈ S | m(s) > 0}, F ′ is restriction
of F to S′ and T ′, and m′ is the multiset on S′ obtained by m restricting to
places in S′.

Analogously we can restrict the net to a subset of places.

Definition 4. Let N = 〈S, T, F,m〉 be a Petri net and let S′ ⊆ S. Then the
subnet generated by S′ is the net N |S′ = 〈S′, T ′, F ′,m′〉, where T ′ = {t ∈
T | F (t, s) > 0 or F (s, t) > 0 for s ∈ S′}, F ′ is restriction of F to S′ and
T ′, and m′ is the multiset on S′ obtained by m restricting to places in S′.

Multi-clock nets: Safe nets can be seen as formed by various sequential com-
ponents (automata) synchronizing on common transitions. This intuition is for-
malized in the notion of multi-clock nets, introduced by Fabre in [6].

Definition 5. A multi-clock net N is the pair (〈S, T, F,m〉, ν) where 〈S, T, F,m〉
is a safe net and ν : S → [[m]] is a mapping such that

– for all s, s′ ∈ [[m]], it holds that s 6= s′ implies ν−1(s) ∩ ν−1(s′) = ∅,
–

⋃
s∈[[m]] ν

−1(s) = S,

– ν|[[m]] is the identity, and
– for all t ∈ T . ν is injective on [[•t]] and on [[t•]], and ν([[•t]]) = ν([[t•]]).

r q

s p

a

bc d

Fig. 1: A multi-clock net.

Given s ∈ S, with s we denote the sub-
set of places defined by ν−1(ν(s)). The
consequences of the two requirements,
namely (a) ν|[[m]] is the identity and (b)
ν is injective on the preset (postset)
of each transition and that ν([[•t]]) =
ν([[t•]]), is that for each s ∈ [[m]], the
net 〈S, T, F,m〉|s = 〈s, Ts, Fs,ms〉 is a
state-machine net, i.e. the preset and
the postset of each transition has at
most one element. State-machine nets
can be considered as finite state au-
tomata, and the net 〈S, T, F,m〉 can be
seen as the union of the various compo-
nents. Sometimes multi-clock nets will
be identified with the underlying safe
net N = 〈S, T, F,m〉 and the partition
mapping will be denoted with ν(N). It should be stressed that the partition is
not unique. Consider the net in figure 1, the two partitions are identified by the
following partition mapping ν(s) = s, ν(r) = s, ν(p) = p and ν(q) = p.

Occurrence Nets: The notion of occurrence net we introduce here is the one
called 1-occurrence net and proposed by van Glabbeek and Plotkin in [17]. First
we need to introduce the notion of state.

6 G. Casu & G. M. Pinna

Definition 6. Let N = 〈S, T, F,m〉 be a Petri net, a state is any finite multiset
X of transitions with the property that the function mX : S → Z given by
mX(s) = m(s) +

∑
t∈T X(t) · (t•(s) − •t(s)), for all s ∈ S, is a reachable

marking of the net which is reached by X. With X (N) we denote the states of
the net N .

A state contains (in no order) all the occurrences of the transitions that have been
fired to reach a marking. Observe that a trace of a net is a suitable linearization
of the elements of a state X. On the notion of state the notion of occurrence net
is based:

Definition 7. An occurrence net O = 〈S, T, F,m〉 is a Petri net where each
state is a set, i.e. ∀X ∈ X (N) it holds that X = [[X]].

The intuition behind this notion is the following: regardless how tokens are
produced or consumed, an occurrence net guarantees that each transition can
occur only once (hence the reason for calling them occurrence nets).

Causal Nets: The notion of causal net we use here is the classical one, though
it is often called occurrence net. The different name is due to the other notion
of occurrence net we use here. Given a net N = 〈S, T, F,m〉, we define s <N t
iff F (s, t) and t <N s iff F (t, s), and ≤N is the transitive and reflexive closure
of this relation. For denoting places and transitions we use B and E (see [18]
and [3, 19]) and call them conditions and events respectively. A causal net is
essentially an acyclic net equipped with a conflict relation (which is deduced
using the relation F , as causal nets are safe nets).

Definition 8. A causal net C = 〈B,E, F,m〉 is a safe net satisfying the follow-
ing restrictions:

– ∀b ∈ m, •b = ∅,
– ∀b ∈ B. ∃b′ ∈ m such that b′ ≤C b,
– ∀b ∈ B. •b is either empty or a singleton,
– for all e ∈ E the set {e′ ∈ E | e′ ≤C e} is finite, and
– # is an irreflexive and symmetric relation defined as follows:
• e#ie

′ iff e, e′ ∈ E, e 6= e′ and •e ∩ •e′ 6= ∅,
• x#x′ iff ∃y, y′ ∈ E such that y#iy

′ and y ≤C x and y′ ≤C x′.

The intuition behind this notion is the following: each condition b represents the
occurrence of a token, which is produced by the unique event in •b, unless b
belongs to the initial marking, and it is used by only one transition (hence if
e, e′ ∈ b•, then e#e′). On causal net it is natural to define a notion of causality
among elements of the net: we say that x is causally dependent from y iff y ≤C x.
Given a causal net C = 〈B,E, F,m〉, if ∀b ∈ B it holds that b• is a singleton,
we say that it is a conflict-free causal net. Observe that a conflict-free causal
net may be considered as a net representing a non-interleaving execution of a
system. The following observation essentially says that each transition (event)
in a causal net is executed only once:

Proposition 1. let C be a causal net, then C is also an occurrence net.

Flow unfolding of multi-clock nets 7

Unravel Nets: Causal nets capture dependencies (and conflicts) whereas oc-
currence nets capture the unique occurrence property of each transition. We
introduce now a notion of net which will turn to be, so to say, in between occur-
rence nets and causal nets. Like in the case of occurrence nets we want to assure
that each transition happens just once, and similarly to causal nets we want still
to be able to retrieve dependencies among the firings of transitions, though in
a more semantical way, as we require that each state of the net (together with
the adjacent arcs) induces a conflict-free causal net.

Definition 9. An unravel net R = 〈S, T, F,m〉 is an occurrence net such that
(a) R is safe, and (b) for each state X ∈ X (R) the net R|[[X]] is a conflict-free
causal net.

This notion covers trivially the one of causal net.

Proposition 2. Let C be a causal net. Then C is an unravel net.

Flow Unravel Nets: Unravel nets are locally acyclic, i.e. for each execution of the
net the causal dependencies are clear. We would like to have this information
also structurally available. To this aim we introduce the notion of flow unravel
nets.

Definition 10. An unravel net R = 〈S, T, F,m〉 is a flow unravel net iff the
set of places S can be divided into two subsets Si and Sc (internal and control
places respectively) such that

1. Si ∪ Sc = S and Si ∩ Sc = m,
2. ∀t ∈ T . •t ∩ Sx 6= ∅ and t• ∩ Sx 6= ∅, for x ∈ {i, c},
3. ∀t, t′ ∈ T . t• ∩ •t′ ∩ Sc 6= ∅ implies that t• ∩ •t′ ∩ Si 6= ∅,
4. ∀t, t′ ∈ T . t• ∩ •t′ ∩ Sc 6= ∅ implies that |t• ∩ •t′ ∩ Sc| = 1, and
5. (Sc, T, Fc,mc) is a connected and acyclic net, where Fc and mc are the re-

striction of F and m to Sc respectively.

The idea behind flow unravel nets is to be able to keep track of dependencies
among transitions, and this is achieved using the places in Sc. We require that
each transition is connected both to internal places (which represent the used or
produced resources) and control places (which are used to describe the dependen-
cies). Requirement (4) is a kind of economicity criterion: among two transitions
there may be at most one control place. Observe that X (R) ⊆ X (R|Si) as each
transition is connected to internal places. We stress that requiring that among
two transitions there may be at most one control place does not imply that the
control place must have just one outgoing arc.

Flow unravel nets are conservative extensions of causal net. C = 〈B,E, F,m〉
is turned into a flow unravel net as follows: for each pair of events e, e′ such that
e• ∩ •e′ 6= ∅ add a place (e, e′), for each event e such that ∀e′ ∈ E •e′ ∩ e• = ∅
add a place (e,−). These added places are the places in Sc \m. The flow relation
F ′ is obtained as expected: F ′(e, (e, e′)) = 1 = F ′((e, e′), e′) for all (e, e′) ∈ Sc
and F (e, (e,−)) = 1 for all (e,−) ∈ Sc.

8 G. Casu & G. M. Pinna

We end this section introducing some auxiliary notions. Assume that there
exists a set of labels A and a labelling function l : Si → A. Then, for each state
of a flow unravel net we can define a mapping that associates to each internal
place the number of equally labeled internal places preceding it with respect to
that state (and this is finite as a state of an unravel net gives a conflict-free
causal net).

Definition 11. Let R = 〈S, T, F,m〉 be a flow unravel net, and l : Si → A be a
labelling function. For each X ∈ X (R) call CX = (R|Si

)|X and SXi are the places
of this causal net. Then for each X ∈ X (R) define tok lX : Si → N as follows:
tok lX(s) = |{s′ ∈ SXi | s′ ≤C s ∧ l(s) = l(s′)}|.

Given a flow unravel net R = 〈S, T, F,m〉, s ∈ Si and X ∈ X (R), we say that s
is used in X iff there exists t ∈ X with s ∈ t•. A flow unravel net is uniformly
labelled with respect to a given labelling function iff to each internal place a
unique number can be associated, for every state. Formally:

Definition 12. Let R = 〈S, T, F,m〉 be a flow unravel net, and l : Si → A be
a labelling function. We say that R is uniformly labelled with respect to l iff
for all s ∈ Si and for all X,X ′ ∈ X (R) such that s is used in X and X ′, then
tok lX(s) = tok lX′(s).

The purpose of the labelling function is to identify token occurrences in the
notion of flow unfolding as it will be clear later.

3 Event structures and nets

We recall now some basic notions on event structures and their relations with
nets.

Prime event structures: Prime event structures (pes) [20, 3] are a simple event-
based model of concurrent computations in which events are considered as atomic
and instantaneous steps, which can appear only once in a computation. The
relationships between events are expressed by two binary relations: causality
and conflict. The relevance of the notion of prime event structure is rooted in
the well known relation with another central notion for modeling computations,
namely the one of domain.

Definition 13. A prime event structure (pes) is a tuple P = (E,≤,#), where
E is a set of events and ≤, # are binary relations on E called causality relation
and conflict relation respectively, such that:

1. the relation ≤ is a partial order and bec is finite for all e ∈ E, and
2. the relation # is irreflexive, symmetric and hereditary with respect to ≤, i.e.,

e#e′ and e′ ≤ e′′ imply e#e′′ for all e, e′, e′′ ∈ E.

An event can occur only after some other events (its causes) have taken place,
and the execution of an event can prevent the execution of other events. This
is formalized via the notion of configuration of a pes P = 〈E,≤,#〉, which is

Flow unfolding of multi-clock nets 9

a subset of events C ⊆ E such that for all e, e′ ∈ C ¬(e#e′) (conflict-freeness)
and bec ⊆ C (left-closedness).

Causal nets and pes are closely related: let C = 〈B,E, F,m〉 be a causal net.
Then (E,≤,#) is a pes, where ≤ and # are the causality and conflict relations
obtained by the causal net (see [3]). To a configuration of the associated pes it
is possible to associate a marking in the causal net.

Proposition 3. Let C = 〈B,E, F,m〉 be a causal net, and let X ⊆ E be a
configuration of (E,≤,#). Then X is a state of C and mark(X) = mX is the
marking reached executing the events in X.

We observe that, given a configuration X of the pes associated to a causal net
C, the subnet C|X is a causal conflict-free net.

Flow event structures: Flow event structures (fes) are another event-based
model for concurrent computations [10]. Like prime event structures also flow
event structures have a clear relation with prime algebraic domains [11], but in a
fes an event may have several histories, whereas in a pes (E,≤,#) the history
of the event e is simply bec, which is a configuration.

Definition 14. A flow event structure (fes) is a tuple F = (E,≺,#), where E
is a set of events and ≺, # are binary relations on E called precedence relation
and conflict relation respectively such that ≺ is irreflexive and # is symmetric.

With respect to pes, the causality is substituted with a precedence relation
and it is stipulated that it is irreflexive, whereas for the conflict relation the
inheritance principle is abandoned. Consider a fes F = (E,≺,#). With e \ e′

we denote the reflexive closure of # and, given X ⊆ E, with ≤X the relation
(≺ ∩(X × X))∗. A configuration of flow event structure is a subset of events
which is conflict-free and where each event e is justified : if an event preceding
it is not in the configuration there must be another one preceding e. The prece-
dence relation hence cover not only the immediate causality but also the various
possible alternatives. Formally we have that X is a configuration iff (X,≤X) is a
partial order such that ∀e ∈ X. {e′ ∈ X | e′ ≤X e} is finite, and given any e ∈ X,
if e′ ≺ e and e′ 6∈ X then there exists e′′ ∈ X and e′ \ e′′ ≺ e. In fact obviously
≺ is irreflexive and # is symmetric. Flow unravel nets are good candidates to be
related to flow event structures. On a flow unravel net net R = 〈S, T, F,m〉 we
can define the following relations, which can be considered as dependency and
conflict relations:

– t ≺ t′ iff t• ∩ •t′ ∩ Sc 6= ∅,
– t #i t

′ iff •t ∩ •t′ ∩ Si 6= ∅,
– # ⊆ T × T is the minimal symmetric and irreflexive relation such that

• #i ⊆ #, and

• t # t′ and t′ ≺ t′′ and ¬(t ≺∗ t′′) then t # t′′.

10 G. Casu & G. M. Pinna

Hence, a flow unravel net net has ingredients similar to the ones that a causal
net has, namely a causality relation and a conflict relation, the main difference
is that the conflict relation in a flow unravel net is only partially inherited. We
can prove the following propositions:

Proposition 4. Let R = 〈S, T, F,m〉 be a flow unravel net, then (T,≺,#) is a
flow event structure.

Proposition 5. Let R = 〈S, T, F,m〉 be a flow unravel net, and let X be a state
of R. Then X is a configuration of (T,≺,#).

Proof. It is enough to show that, given any t ∈ X, if t′ ≺ t and t′ 6∈ X then
there is a t′′ ∈ X such that t′′ ≺ t and t′#t′′, as the other requirements are
met trivially by the definition of state and of unravel net. Assume that there is
t′ ≺ t, t′ 6∈ X and there is no t′′ ∈ X which is t′′ ≺ t and such that t′#t′′. But
this would violate that R|[[X]] is a causal net.

Proposition 6. Let R = 〈S, T, F,m〉 be a flow unravel net, and let X ⊆ T be a
configuration of (T,≺,#). Then X is a state of R and mark(X) = mX is the
marking reached executing the events in T .

Proof. By induction on the size of X (the elements of X). If X is the empty set
then mark(X) = m = mX . Assume it holds for X of size n and let us prove
for X ∪ {t}, with t 6∈ X. As X ∪ {t} is a configuration t is a maximum with
respect to ≤X as otherwise X would not be a configuration, hence it remains
to prove that mX [t〉 . Assume it is not, then there must be a place in •t which
is not marked in mX . But this can happen only if there is a transition t′ in X
which have used the token in this place, which means that t#t′ contradicting
that X ∪ {t} is a configuration.

4 Flow unfolding of a multi-clock net

In this section we construct a flow unravel net which turns out to be an unfolding
of a multi clock net.

The unfolding of a net N is usually defined as a pair: a net with certain
properties and a mapping that associate this net to N in such a way that to
each state of N a state of the unfolding of N correspond and vice versa. We
recall the notion of morphism between safe nets [3].

Definition 15. Let N = 〈S, T, F,m〉 and N ′ = 〈S′, T ′, F ′,m′〉 be nets. A mor-
phism h : N → N ′ is a pair 〈hT , hS〉, where hT : T → T ′ is a partial function
and hS ⊆ S × S′ is a relation such that

– for each s′ ∈ m′ there exists a unique s ∈ S and s hS s
′,

– if s hS s′ then the restriction hT : •s → •s′ and hT : s• → s′• are total
functions, and

– if t′ = hT (t) then hopS : •t′ → •t and hopS : t′• → t• are total functions, where
hopS is the opposite relation to hS.

Flow unfolding of multi-clock nets 11

Morphisms among safe nets preserve the reachable markings: let h : N → N ′

be a net morphism. For each m,m′ ∈ MN and A ∈ µT , if m [A〉m′ then
hS(m) [µhT (A)〉hS(m′) where hS(m) = {s′ ∈ S′ | ∃s ∈ m and s hS s

′}.
The mapping which is the second component of the unfolding is a suitable

morphism which is called folding:

Definition 16. Let N = 〈S, T, F,m〉 and N ′ = 〈S′, T ′, F ′,m′〉 be two nets and
h : N → N ′ a net morphism. h is a folding iff hT is total, hS is a total function
and for all t ∈ T , there are bijections between •t and •hT (t), t• and hT (t)• and
between m and m′.

Given a safe net N = 〈S, T, F,m〉, an unfolding is a pair (C, p) where C =
〈B,E, F ′,m′〉 is a causal net and p is a folding (see [3, 4]). Observe that if N is a
multi-clock net (the partition mapping being ν(N)), also C is a multi-clock net,
the ν(C) being defined as follows: for b ∈ B. ν(C)(b) = ν(N)(hs(b)).

The notion of folding we have defined above has to be specialised when flow
unravel nets are considered. Control places are used to enforce dependencies
among transitions, but they do not represent resources.

Definition 17. Let R = 〈SRi ∪SRc , TR, FR,mR〉 be a flow unravel net and N =
〈S, T, F,m〉 be multi clock net. Then p : R → N is a flow-folding morphism iff
p′ : R|SR

i
→ N is a folding morphism, where pT = p′T and p′S is the restriction

of pS to places in SRi , and for all sc ∈ Sc and for all s ∈ S. ¬(sc hs s).

A consequence of this definition is that in a flow-folding morphism control places
are not associated to any place in the net onto which a flow unravel net is folded.

We are now ready to define a flow unfolding.

Definition 18. Let N = (〈S, T, F,m〉, ν) be a multi-clock net. Then a flow un-
folding is the pair (R = 〈Sr, T r, F r,mr〉, p) where

1. p : 〈Sr, T r, F r,mr〉 → 〈S, T, F,m〉 is a flow folding morphism,
2. R = 〈Sr, T r, F r,mr〉 is a uniformly labelled flow unravel net with respect to

pS |SR
i

,

3. ∀ t, t′ ∈ TR. •t = •t′ and pT (t) = pT (t′) ⇒ t = t′,
4. ∀ t, t′ ∈ TR. •t ∩ Si = •t′ ∩ Si and t• ∩ Si = t′• ∩ Si ⇒ t = t′, and
5. ∀ t ∈ TR. | •t ∩ Sc| ≤ | •t ∩ Si|.

Condition (3) is the usual on unfoldings: two transitions that have the same
preset and are mapped onto the same transition of the original net are the same.
Internal places are meant to represent the i− th occurrence of a token in a given
place of the unfolded net. In this view Condition (2) states that each internal
place bears the same occurrence of tokens. Condition (4) enforces two transitions
consuming and producing the same tokens to be the same transition and the last
condition puts a bound on the number of control places. This condition will be
more clear when we will effectively construct the unfolding of a multi-clock net.

The algorithm to construct this unfolding is similar to the one devised in
the construction of a branching process [4]. However, in order to adapt it to our

12 G. Casu & G. M. Pinna

purposes, we have to characterize the ingredients, namely the names of places
(either control or internal ones), transitions, what a co-set of the net is and
finally what the possible extensions are.

We start introducing the neighborhood of a transition.

Definition 19. Let N = 〈S, T, F,m〉 be a net, and let t ∈ T , with 	 (t) =
{t′ | t′ ∈ •s or t′ ∈ s′• with s ∈ •t and s′ ∈ t•}∪{t} we denote the neighborhood
of t, namely the transitions following and preceding t, including t.

The transitions in the neighborhood of t are used to find the local name of the
occurrence of the transition in the unfolding, and the name is used to characterize
also internal and control places. To this aim, we introduce an equivalence on
words (on alphabets containing the names of transitions in the net we have
to unfold). Let N = (〈S, T, F,m〉, ν) be a multi-clock net, and let T ′ ⊆ T be
a subset of transitions, and let w,w′ two words on (T ′)+, the for all t ∈ T ′,
we say that w ∼t w′ iff for all s ∈ [[•t]], |proj (w, •s)| = |proj (w′, •s)| and
for all s ∈ [[t•]], |proj (w, •s)| = |proj (w′, •s)|, and with (|w|)∼t

we denote the
equivalence class of the word w. Control places and transitions are pairs where
the first component is an equivalence class of words on an alphabet of transitions
(restricted to the transitions of an automata forming the multi-clock net) and
the second component is a transition. The first component of a control place, the
equivalance class, encodes all the equivalent (local) histories leading to the same
future, represented by the name of the transition in the second component.

The internal places of this unfolding are easy to identify: consider a multi-
clock net N = (〈S, T, F,m〉, ν), then these places are of the following form:
{(s, i) | s ∈ S and i ∈ N+}, meaning that the place s got its i-th token.

We characterise now the possible extensions of a flow unravel net. Let R =
〈S, T, F,m〉 be a flow unravel net and let X ∈ X (R), then [[mX]] is a cut of
R. With respect to causal nets, where a cut is a maximal subset of pairwise
concurrent places (conditions), here we have to consider the reached marking of
the execution of the elements of a state (a configuration in the corresponding
fes). A co-set A is a subset of a cut of R such that there exists a transition
t ∈ T such that [[•t]] = A.

Definition 20. Let (R, p) be a flow unfolding, with R = 〈Si ∪ Sc, T, F,m〉. The
possible extensions of (R, p) are the transitions ((|w|)∼t

, t), w ∈	 (t)∗, such that
for all s ∈ [[•t]]

– there exists ((|αs|)∼t
, t) ∈ Sc where αs = proj (w,	(t) ∩ Tν−1(ν(s)))

– A = {((|αs|)∼t
, t) | s ∈ •t} ∪ {(s, |proj (w, •s)| + m(s)) | s ∈ •t} is a co-set

of R such that •t = pS(A), and
– ((|w|)∼t

, t) does not already belong to (R, p).

Let us focus on the set of places A = {((|αs|)∼t , t)} ∪ {(s, |proj (w, •s)|+m(s))},
where clearly {((|αs|)∼t

, t)} ⊆ Sc and {(s, |proj (w, •s)| + m(s))} ⊆ Si. The
internal places (those of the form (s, i)) are the instances of tokens consumed by
the transition ((|w|)∼t

, t), whereas the {((|αs|)∼t
, t)} are the control places used

by this transition.

Flow unfolding of multi-clock nets 13

The algorithm to construct the flow unfolding is the one described in Ta-
ble 1. In this algorithm, NextPe(R, p) is used to find all the possible extensions
according to Def. 20.

Table 1 The algorithm for constructing a flow unfolding

Input: A multi-clock net N = (S, T, F,m)
Output: The flow unfolding FU = (R, p), R = 〈Si ∪ Sc, T

′, F ′,m〉
begin:
FU ← (〈{(s, 1) | m(s) = 1}, ∅, ∅, {(s, 1) | m(s) = 1}〉, p)
where pS((s, 1)) = s
pe← NextPe(R, p)
while pe 6= ∅ do

Add to FU a transition ((|w|)∼t , t) ∈ pe
and compute the places:

S
((|w|)∼t ,t)

i = {(s, k) | k = |proj (w, •s)| + 1 +m(s)}, ∀s ∈ [[t•]]

S
((|w|)∼t ,t)
c = {((|αs|)∼t′ , t

′) | αs ∼t′ proj (wt,	(t)∩Ts}), ∀s ∈ [[t•]] and ∀t′ ∈ [[s•]]
and extend F ′ with:
F ′(x, ((|w|)∼t , t)) = 1,∀x ∈ A (see Def. 20) and 0 otherwise

F ′(((|w|)∼t , t), s) = 1, ∀s ∈ (S
((|w|)∼t ,t)
c ∪ S((|w|)∼t ,t)

i) and 0 otherwise
then update data structures
pe← (pe \ ((|w|)∼t , t)) ∪NextPe(R, p)
Si ← Si ∪ S

((|w|)∼t ,t)

i

Sc ← Sc ∪ S
((|w|)∼t ,t)
c

T ′ ← T ′ ∪ {((|w|)∼t , t)}
and extend pT with pT (((|w|)∼t , t)) = t and pS with pS((s, k)) = s with

(s, k) ∈ S((|w|)∼t ,t)

i and undefined for the places in S
((|w|)∼t ,t)
c

end while

The following proposition states that at each iteration the algorithm produces
a flow unravel net, that means that no circularity is introduced among control
places.

Proposition 7. Let (R, p) be the result of the algorithm in Table 1. Then R is
a flow unravel net.

Proof. Algorithm initialization creates the net R0 = 〈S0 = S0
i ∪ S0

c = {(s, 1) |
m(s) = 1}, ∅, ∅,m = {(s, 1) | m(s) = 1}〉 and a set of possible extensions pe =
{((|ε|)∼t

, t)}, for all t enabled by the initial marking of N . R0 is a trivial flow
unravel net and equipped with p is a flow unfolding.

Assume that up to the n-th possible extension added we have a flow unravel
net Rn = 〈Sni ∪ Snc , Tn, Fn,m = {(s, 1) | m(s) = 1}〉 and be ((|w|)∼t

, t) the
(n + 1)-th. We will show that adding ((|w|)∼t , t) the properties of Def. 10 are
fulfilled.

(1) and (2) follow from the definition of possible extensions, in particular, (2)
holds because we always put a transition iff there is a co-set that can fire it and at

14 G. Casu & G. M. Pinna

least one internal place is created in the process of adding a transition. In order to
prove (3) we must ensure that if ((|w̄|)∼t′ , t

′) ∈ Tm,m ≤ n and sc ∈ ((|w̄|)∼t′ , t
′)•∩

•((|w|)∼t , t) ∩ Sc then there exists si ∈ ((|w̄, t′|)∼t′)
• ∩ •((|w|)∼t , t) ∩ Si.

The possible extension ((|w̄|)∼t′ , t
′) added a place (s, k′) with s ∈ t′•, k′ =

|proj (w̄, •s)| + 1, and the equivalences w̄t′ ∼t sc ∼t w exhibit the existence of
(s, k) ∈ A co-set of Rn, such that s ∈ •t with k = |proj (w, •s)|. We show that
k = k′ and thus Condition 3 of Def. 10 holds.

As t′ ∈ •s, by using the definition of equivalence on places, we obtain:

w̄t′ ∼t sc ∼t w ⇔ |proj (w̄t′, •s)| = |proj (w, •s)|
⇔ |proj (w̄, •s)| + 1 = |proj (w, •s)|
⇔ k′ = k

To prove Condition (5) of Def. 10 consider the following net fragment:

((|w̄|)∼t̄
, t̄) ((|w|)∼t , t)

(s̄, k̄)

((|w̄|)∼t̄
, t̄) ((|w|)∼t , t)

((|x|)∼y
, y)

((|x|)∼y , y)

A cycle means that w̄ ∼t′ wt, where ((|wt|)∼t′ , t
′) is one of the control places

created by adding the transition ((|w|)∼t , t).
Before adding the possible extension ((|w|)∼t , t) we can identify class repre-

sentative of u ∼t̄ such that |u|t = n is the maximum number of t and u ∼t̄ w̄.
The number of t is bounded because we assume that at least till ((|w|)∼t

, t) the
net restricted to control places has no cycles. A state of Rn+1|Sn+1

c
containing

both ((|w̄|)∼t̄,t) and ((|w|)∼t
, t) would have the internal place (s̄, k̄) marked twice

since its token is put by ((|x|)∼y,y) first, and then by ((|w|)∼t , t). As for ((|w̄|)∼t̄,t̄)
we can find a class representative of v ∼t̄ such that |v|t is maximum and v ∼t̄ w.
Since the word v takes into account all the occurrences of t that u has, plus at
least one, it is obvious that k̄ = |proj (v, {t, . . . })| 6= |proj (u, {t, . . . })| and this
leads to a contradiction. Hence a cycle cannot exist.

The algorithm does what it is expected: it gives a flow unfolding (it is routine
to check the various conditions of Def. 18).

Theorem 1. Let N = (〈S, T, F,m〉, ν) be a multi-clock net. The algorithm in
Table 1 constructs a flow unfolding for N .

In Fig. 2 the result of few iterations of the algorithm applied to the multi-
clock net in Fig. 1 is shown. Control places are depicted with a gray background.
The transition ((|a|)∼b

, b) depends on the transition ((|ε|)∼a , a) as in the preset
of the former there is the control place ((|a|)∼b

, b) that is in the postset of the
latter. The transitions ((|a|)∼b

, b) and ((|ε|)∼b
, b) are in conflict as they share, in

their presets, the internal place (p, 1), which is also a control place.
If we consider only internal places of a flow unfolding of a multi-clock net,

we have again a multi-clock net.

Flow unfolding of multi-clock nets 15

(p, 1)

(s, 1)

(s, 2)

((|a|)∼a , a)

((|a|)∼b
, b)

(r, 1)

(q, 1)

((|b|)∼c , c)

((|b|)∼d
, d)

((|ab|)∼c , c)

((|bc|)∼b
, b)

((|abc|)∼a , a)

((|abc|)∼b
, b)

(s, 3)

((|ε|)∼b
, b)

((|ε|)∼a , a)

((|b|)∼c , c)

((|a|)∼a , a)

((|a|)∼b
, b)

((|ab|)∼c , c)

Fig. 2: A part of the flow unfolding of the multi-clock net shown in Fig. 1.

Proposition 8. Let N = (〈S, T, F,m〉, ν) be a multi-clock net and let (R, p) be
the flow unfolding of N , where R = 〈SRi ∪ SRc , TR, FR,mR〉. Then R|SR

i
is a

multi-clock net.

Proof. The internal places of R are mapped onto the places of a multi-clock net.
By definition of flow folding morphism it is clear that also R|SR

i
is a multi-clock

net, defining ν(R|SR
i

)((s, k)) = p−1
S (ν(s)).

Our construction has the same property of other notions of unfoldings: it is
the most general one, in the sense that any other candidate to be an unfolding
is uniquely mapped onto our flow unfolding.

To prove this we first have to define the depth of a flow unravel net R =
〈Si ∪ Sc, T, F,m〉. As the net when restricted to control places is acyclic it is
straightforward to define the depth as follows:

Definition 21. Let R = 〈Si ∪ Sc, T, F,m〉 be a flow unravel net. We define the
depth of control places and transitions as follows:

– depth(s) = 0 if s ∈ m,
– depth(t) = max{depth(s) | s ∈ •t ∩ Sc}+ 1 and for all s ∈ Sc, and
– depth(s) = min{depth(t) | s ∈ t•}.

There are two relevant differences with respect to the classical notion of depth:
it is calculated on control places and not on internal places (because of cycle
it may arise when considering internal places) and it is taken as the minimum
among those available. Control places may have several incoming arcs modeling
the various alternatives but locally equivalent past histories of a transition. It is
then enough to consider the shortest.

16 G. Casu & G. M. Pinna

Theorem 2. Let N be a multi-clock net and (R, p) its flow unfolding. Let R′ be
a flow unravel net, g : R′ → N be a morphism and let R′ be uniformly labelled
flow unravel net with respect to gS. Then there exists a unique morphism from
R′ to R.

Proof. We sketch the proof. The proof is done by constructing a chain of mor-
phisms from suitable subnets of R′ to R. Subnets are defined accordingly to the
notion of prefix, which is in this case calculated as follows. Consider the control
places at depth less or equal to n, and call them S′n. Take T ′n = •S′n =

⋃
s∈S′n

•s,

then the subnet of depth n of R′ is R′|T ′n .
Let us construct the morphisms as follows: h0 : R′|T ′0 → R is defined as

h0
T = ∅ and the relation on places is s h0

S (gS(s), 1), as T ′0 is empty (as gS is a
bijection on the initial marking gS(s) is well defined).

The morphism hn+1 : R′|T ′n+1
→ R is obtained from hn. Take any t1 ∈ T ′n+1 \

T ′n. We have two possibilities: either gT (t1) is undefined or gT (t1) = t. In the
first case hn+1

T (t1) is undefined and the the places in t1
• are unrelated to any

place in R. In the second case, consider •t1, and the places in s′ ∈ SRi ∪ SRc
such that s hnS s′, for s ∈ •t1. By construction of the flow unfolding, these
places are a co-set of R, and then there is a t′ ∈ TR such that •t′ is this co-set
and pT (t′) = t = gT (t1). It is then easy to stipulate hn+1

T (t1) = t and for all
s ∈ t1• ∩SRi put shn+1

T (gS(s), k), where k is number associated to s in R′ (as R′

is uniformly labelled with respect to gS). It remains to define the relation hn+1

on control places. Consider then any t′1 ∈ T ′ for which hnT is defined and such
that hnT (t′1)• ∩ •t′ ∩ SRc 6= ∅. As N is multi-clock net hnT (t′1)• ∩ •t′ ∩ SRc is a
singleton, say {shn

T (t′1),t′}. Relate then the place in t′1
• ∩ •t1 ∩ S′c with shn

T (t′1),t′ .
It is routine then to check that this is a well defined morphism.

Uniqueness can be proved along the same line.

5 Relating flow unfoldings to other unfoldings

In this section we relate our construction with two other notions of unfolding
presented in literature, namely the one of merged process [7] and trellises [6].
Clearly a classical unfolding can be folded onto a flow unfolding by transforming
the causal net into a flow unravel net and using Th. 2.

Let N = 〈S, T, F,m〉 be a safe net, (C, p) be an unfolding of N where C =
〈B,E, F ′,m′〉 is a causal net and p : C → N is a folding morphism (i.e. ∀ e, e′ ∈
E. (•e = •e′ and pT (e) = pT (e′)) ⇒ e = e′), then (C, p) is called a branching
process of N [4]. As pS is a total function from B to S, it can be seen as a
labelling function, hence we can associate to each place a number that it is called
the occurrence-depth and that it is defined as follows: the occurrence-depth of a
condition b ∈ B is the highest number of equally labelled conditions that are on
a path from an initial condition to b. We recall the definition of merged process
for safe nets:

Definition 22. Let N be a safe net and (C, p) be branching process. The merged
process of (C, p) is the net Merge(C, p) defined by the following steps:

Flow unfolding of multi-clock nets 17

1. all the conditions bearing the same label and having the same occurrence-
depth are fused together, and these conditions, called mp-conditions, inherits
the same incoming and outgoing arcs of the conditions that are fused, finally
an mp-condition inherit the same label of the fused conditions,

2. after performing the previous step, all the transitions with the same label, the
same preset and the same postset are fused together, giving an mp-event, and
they inherit the label from the fused as well as the incoming and outgoing
arcs, and

3. the initial marking is given by the mp-conditions which are originated by
conditions that were minimal in the causal net C.

Interestingly enough, our construction is strongly related to this one:

Theorem 3. Let N be a multi-clock net, (R, p) its flow unfolding, (C, f) be its
branching process and Merge(C, f) the associated merged process. Then R|Si

and
Merge(C, f) are the same net up to renaming of places and transitions.

Proof. We give the proof idea. Clearly internal places of R are the same of
Merge(C, f), being N a multi-clock net (hence a place belongs to a unique au-
tomaton, as automata synchronize on common transitions). We have to show
that the transitions are the same as well. Assume they are not, then R has at
least two transitions t, t′ which are identified in Merge(C, f) but are not in R. As
they are identified in Merge(C, f) they the same internal preset and postset. But
this is impossible. Assume now that there are two transitions t, t′ in Merge(C, f)
which are identified in R. Then they have the same internal preset and postset
hence they have to be identified also in Merge(C, f). Hence the thesis.

A merged process of a multi-clock net can be transformed into a flow unfolding
as well, but control places have to be added with a different criteria with respect
to the one devised for causal net (i.e. by looking directly if two transitions have a
place in common). The idea is that there is a control place among two transitions
if they share a place and they belong to the same configuration. Consider the
merged process in Fig. 3(d). The multiset of transition X defined as X(a1) = 1,
X(c1) = 2 and X(b2) = 2 is a state of the net depicted in Fig. 3(d), but it is not
a configuration of the causal net in Fig. 3(c). In [7] a way to check if an run of
the net is a configuration is provided without resorting to the branching process,
that can be used to add the control places.

A different consideration have to be done for trellises. Trellises are defined for
multi-clock nets, and they unfold properly the time but do not expand conflicts.
In a trellis each execution corresponds to the synchronization of trajectories
in each component, synchronization performed on appropriate equally labelled
transitions. Now conditions in a trellis are fused only if they bear the same label
(are occurrence of the same place) and have the same time and this time is
calculated counting the conditions belonging to the same automata in the past.
Thus they are not easily comparable with flow unfoldings, where time does not
count.

In Fig. 3 we draw (parts) of the unfolding/branching process (c), merged
process (d), trellis (e) and flow unfolding (b) of the net (a). Internal places and

18 G. Casu & G. M. Pinna

r

s

a

bc

(a)

s

s

a

b

r

c

c

s

b

a

b

b1

a1

c1

a′

b2

c2

c c

(b)

s

s

s s

s s s

r

r

r r

a1

a2

a a3

b1

b2

b b

c1

c2

(c)

s

s

s

s

r

r

a1

a′

a

b1

b2

b

b

c1 c2

(d)

s

s

s

s

r

r

r

â1

â2

â3

b̂1

b̂2

b

ĉ1

ĉ2

c

(e)

Fig. 3: A multi-clock net and various unfoldings.

transitions of (b) give the net drawn in (d). In these unfoldings there is no
concurrency, only conflicts and causal dependencies may be deduced. On the
trellis the dependencies are deduced by going from the initial condition along
a path, similarly to the flow unfolding, and conflicts arise from the use of a
common resource (hence in the trellis (e) the events â1 and b̂1 are in conflict).
In the merged process executable cycles are possible: b2 can be executed twice
(one after a1 and the second after c1), whereas this is impossible in the flow
unravel net. The event a′ is obtained fusing a2 and a3 in the branching process.
In the flow unfolding b2 can be executed only once, and again, like in trellises,
conflicts arise by using the same resource: b2 is in conflict with a′ (which is again
the result of fusing a2 and a3) but now b2 cannot be executed twice, as it uses
the token that the transition a1 puts in the control place b. Dependencies are
captured along the control places that in this figure are labelled with the name
of the transitions they enable.

6 Conclusions

In this paper we have proposed a notion of unfolding of multi-clock nets that
can be easily related to the class of flow event structures. This unfolding is

Flow unfolding of multi-clock nets 19

proved to be the more general one among those for which a dependency and a
conflict relation can be defined (see Th. 2), and this result gives, in our opinion,
evidence that the construction is reasonable and useful. Indeed our result gives
further substance from a theoretical viewpoint to merged processes (see Th. 3).
Moreover the relation of causal dependency may be relevant for model checking
performed using this kind of unfolding.

Still our construction has some weakeness. It relies on multi-clock nets, and
though any safe net can be turned into a multi-clock net, as already noticed
in the introduction, the construction as it is now cannot be applied to unsafe
nets in general. The reason is that control places are used to equate histories
leading to the same future, and these histories are easily identified just looking
at transitions in a component. This information turn out to be rather crucial.
The generalization we devise should consider an adequate equivalence to equate
local histories. In this line, the decomposition approach proposed in [23] has to
be pursued. Furthermore, the number of control places depends on the number
of components of a multi-clock net, and the construction that associates a multi-
clock net to a safe one creates a component for each place in the original net.

We have certainly left out the investigation on how to find cut-off events to
obtain a finite and complete prefix of a flow unfolding, which is already presented
in [22] for the merged processes. The clear dependency relation we propose could
fit in the theoretical framework devised in [24].

Another advantage of having a dependency relation is the possibility of apply-
ing the approach pursued in [25] and [26]. We are confident that reveal relations
can be defined starting from a flow unravel nets, and this will be the subject of
future works.

Acknowledgement: We would like to thank Eric Fabre and Victor Khomenko for

many useful discussions on the topic of this paper, and to the reviewers as well for the

useful criticisms that have helped us in improving the paper.

References

1. Khomenko, V.: Model Checking based on Prefixes of Petri Net Unfoldings. PhD
thesis, School of Computing Science, University of Newcastle upon Tyne (2003)

2. Fabre, E., Benveniste, A., Haar, S., Jard, C.: Distributed Monitoring of Concurrent
and Asynchronous Systems. Discrete Event Dynamic Systems 15 (2005) 33–84

3. Winskel, G.: Event Structures. In Brauer, W., Reisig, W., Rozenberg, G., eds.:
Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986,
Part II, LNCS 255, Springer Verlag (1987) 325–392

4. Engelfriet, J.: Branching processes of Petri nets. Acta Informatica 28 (1991)
575–591

5. McMillan, K.: A Technique of State Space Search Based on Unfolding. Formal
Methods in System Design 6 (1995) 45–65

6. Fabre, E.: Trellis processes : A compact representation for runs of concurrent
systems. Discrete Event Dynamic Systems 17 (2007) 267–306

7. Khomenko, V., Kondratyev, A., Koutny, M., Vogler, W.: Merged Processes: a
new condensed representation of Petri net behaviour. Acta Informatica 43 (2006)
307–330

20 G. Casu & G. M. Pinna

8. van Glabbeek, R.J., Plotkin, G.D.: Configuration structures, event structures and
Petri nets. Theoretical Computer Science 410 (2009) 4111–4159

9. Pinna, G.M., Poigné, A.: On the nature of events: another perspective in concur-
rency. Theoretical Computer Science 138 (1995) 425–454

10. Boudol, G.: Flow Event Structures and Flow Nets. In Guessarian, I., ed.: Semantics
of Systems of Concurrent Processes. LNCS 469, Springer (1990) 62–95

11. Boudol, G., Castellani, I.: Flow models of distributed computations: Three equiv-
alent semantics for ccs. Information and Computation 114 (1994) 247–314

12. Baldan, P., Corradini, A., Montanari, U.: Contextual Petri nets, asymmetric event
structures and processes. Information and Computation 171 (2001) 1–49

13. Baldan, P., Busi, N., Corradini, A., Pinna, G.M.: Domain and event structure
semantics for Petri nets with read and inhibitor arcs. Theoretical Computer Science
323 (2004) 129–189

14. Langerak, R.: Bundle Event Structures: A Non-Interleaving Semantics for Lotos.
In Diaz, M., Groz, R., eds.: Fifth International Conference on Formal Description
Techniques for Distributed Systems and Communication Protocols, FORTE ’92,
IFIP Transactions C-10, North-Holland (1992) 331–346

15. Gunawardena, J.: A generalized event structure for the Muller unfolding of a safe
net. In Best, E., ed.: CONCUR’93 Conference Proceedings. LNCS 715, Springer
Verlag (1993) 278–292

16. Pinna, G.M.: How much is worth to remember? a taxonomy based on Petri Nets
Unfoldings. In Kristensen, L.M., Petrucci, L., eds.: Proceedings of the 32nd Inter-
national Conference on Application and Theory of Petri Nets. LNCS 6709, Springer
Verlag (2011) 109–128

17. van Glabbeek, R.J., Plotkin, G.D.: Configuration structures. In Kozen, D., ed.:
Proceedings of 10th Annual IEEE Symposium on Logic in Computer Science, IEEE
Computer Society Press (1995) 199–209

18. Reisig, W.: Petri Nets: An Introduction. EACTS Monographs on Theoretical
Computer Science. Springer Verlag (1985)

19. Hayman, J., Winskel, G.: The unfolding of general Petri nets. In Hariharan, R.,
Mukund, M., Vinay, V., eds.: IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science (FSTTCS 2008), Dagstuhl,
Germany, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2008)

20. Nielsen, M., Plotkin, G., Winskel, G.: Petri Nets, Event Structures and Domains,
Part 1. Theoretical Computer Science 13 (1981) 85–108

21. Esparza, J., Römer, S., Vogler, W.: An Improvement of McMillan’s Unfolding
Algorithm. Formal Methods in System Design 20 (2002) 285–310

22. Khomenko, V., Mokhov, A.: Direct construction of Complete Merged Processes.
The Computer Journal (2013) to appear

23. Rathke, J., Sobocinski, P., Stephens, O.: Decomposing Petri nets. CoRR
abs/1304.3121 (2013)

24. Khomenko, V., Koutny, M., Vogler, W.: Canonical prefixes of Petri net unfoldings.
Acta Informatica 40 (2003) 95–118

25. Balaguer, S., Chatain, T., Haar, S.: Building occurrence nets from reveals relations.
Fundamamenta Informaticae 123 (2013) 245–272

26. Haar, S., Kern, C., Schwoon, S.: Computing the reveals relation in occurrence nets.
Theoretical Computer Science 493 (2013) 66–79

