
Thermal Balancing Policy for Streaming Computing on
Multiprocessor Architectures

Fabrizio Mulas, Michele Pittau,
Marco Buttu, Salvatore Carta,

DMI-University of Cagliari
32 Via Ospedale, Cagliari, Italy

[mulas,pittau,buttu,salvatore]@unica.it

Andrea Acquaviva
DI-University of Verona

Strada le Grazie 15, Verona, Italy
andrea.acquaviva@univr.it

Luca Benini
DEIS - University of Bologna

V.le Risorgimento 2, Bologna, Italy
lbenini@deis.unibo.it

David Atienza,
Giovanni De Micheli

LSI-EPFL
Lausanne, CH

[david.atienza,giovanni.demicheli]@epfl.ch

ABSTRACT
As feature sizes decrease, power dissipation and heat generation
density exponentially increase. Thus, temperature gradients in Mul-
tiprocessor Systems on Chip (MPSoCs) can seriously impact sys-
tem performance and reliability. Thermal balancing policies based
on task migration have been proposed to modulate power distri-
bution between processing cores to achieve temperature flattening.
However, in the context of MPSoC for multimedia streaming com-
puting, where timeliness is critical, the impact of migration on qual-
ity of service must be carefully analyzed. In this paper we present
the design and implementation of a lightweight thermal balancing
policy that reduces on-chip temperature gradients via task migra-
tion. This policy exploits run-time temperature and load informa-
tion to balance the chip temperature. Moreover, we assess the ef-
fectiveness of the proposed policy for streaming computing archi-
tectures using a cycle-accurate thermal-aware emulation infrastruc-
ture. Our results using a real-life software defined radio multitask
benchmark show that our policy achieves thermal balancing while
keeping migration costs bounded.

1. INTRODUCTION
Power density increase and thermal management are two of the

key factors limiting the performance and high-performance multi-
core and Multi-Processor System-on-Chip (MPSoC) architectures [13].
Moreover, it has been demonstrated that large temperature vari-
ations cause low reliability and they also have a negative effect
on leakage [13]. Thermal balancing does not come as a side ef-
fect of energy and load balancing; thus, thermal management and
balancing policies are needed [12, 5]. Although task and thread
migration have been proposed to prevent thermal runaway and to
achieve thermal balancing in multithreaded architectures [3, 5],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

in the case of MPSoC-based streaming computing architectures,
which are tightly timing constrained, the cost constraints are dras-
tically different. In this context, it is critical to evaluate thermal
policies and task migration costs to provide accurate analyses of
the implications of thermal gradients in processing cores, and the
quality-of-service degradation due to task deadline misses. Hence,
this kind of analysis needs to be performed with suitable thermal-
aware simulation or emulation infrastructures, which provides the
required accuracy without impacting emulation time [2]. More-
over, these infrastructures must include the impact of the software
layers needed to support task migration, namely, the Multi-Processor
Operating Systems (MPOS), the middleware and the communica-
tion library.

In this paper we present a thermal balancing policy whose pur-
pose is to keep the spatial and temporal temperature gradient con-
trolled for streaming computing MPSoC architectures. The contri-
butions of the paper are the following: (i) design of a lightweight
thermal balancing policy with a fully-functional implementation;
(ii) a detailed and exhaustive evaluation of task migration effects
due to the application of the thermal balancing policy, allowed by
the thermal-aware emulation infrastructure; and (iii) the compari-
son with other thermal balancing policies as well as with energy
and load balancing policies using a streaming multimedia bench-
mark, i.e., a Software Defined FM Radio application. Our re-
sults show that our policy achieves thermal balancing with less cost
in Quality-of-Service (QoS) than other state-of-the-art techniques,
while keeping task migration overhead to a very low cost, both in
performance and temperature.

This paper is organized as follows. In Section 2, we overview
related work on thermal and power management techniques. In
Section 3 we present our thermal balancing policy. In Section 4 we
describe the complete MPOS-MPSoC emulation framework used
to compare our proposed thermal balancing policy with state-of-
the-art solutions to this problem. Then, in Section 5, we present
our experimental results. Finally, in Section 6, we summarize the
main conclusions of the paper.

2. RELATED WORK
Many recent works in computer architecture focus on power man-

agement and thermal control for multi-core and MPSoCs [9, 5, 4].
While reducing power density has the effect of reducing overall

temperature, power-aware design does not directly imply that ther-
mal gradients between different components are minimized or in-
dividual hot spots do not appear [13, 5].

Using several high-level architectural models, related works ex-
ist that focus on the design of control policies for thermal manage-
ment. [5, 1] have proposed adaptive mechanisms for thermal man-
agement, but they use techniques of a primarily power-aware nature
focusing on key micro-architectural hotspots rather than mitigating
thermal gradients. Also, task and thread migration techniques have
been suggested in multi-core platforms. [3, 4] describe techniques
for thread assignment and migration using performance counter-
based information or compile-time pre-characterization. However,
their techniques mainly apply to multi-threaded architectures and
the assumed performance cost of thread migration are high for MP-
SoC and streaming applications. Finally, [11] studies the thermal
behavior of low-power MPSoCs. This work concludes that for such
low-power architectures, no thermal issues presently exist. How-
ever, this analysis is only applicable to very low-power embedded
architectures, which have a limited processing power that is not
sufficient to fulfill the requirements of the MPSoC streaming pro-
cessing architectures that we cover in this work. Also, [16] investi-
gates both power- and thermal-aware techniques for task allocation
and scheduling. This work shows that thermal-aware approaches
outperforms power-aware schemes in terms of maximal and aver-
age temperature reductions. However, it does not come up with a
thermal balancing algorithm as we present in this paper.

To fully assess the effectiveness of these techniques, an accurate
thermal-aware simulation/emulation framework is needed. Sev-
eral groups have proposed schemes for thermal modeling and sim-
ulation at different levels of abstraction. [13] presents a ther-
mal/power model for super-scalar architectures. [14] outlines a sim-
ulation model on embedded cores, which show thermal gradients
across the cores. [8] explores methods to model performance and
power efficiency for multicore processors, but they do not study
thermal management policies.

3. THERMAL BALANCING POLICY
The development of thermal balancing policies is needed be-

cause temperature gradients affect reliability and leakage. In gen-
eral, thermal balancing does not come as a side effect of energy
balancing. In Figure 1.a a typical situation where a two core sys-
tem running three tasks (A, B, C) is energy balanced but thermally
unbalanced is shown. Both processors can independently set their
frequency and voltage to reduce energy/power dissipation to the
minimum required by the current load. Tasks are characterized by
their full-speed-equivalent load (FSE), that is the load imposed by
a task when the core runs at full speed (maximum available fre-
quency). Core 1 runs tasks A and B, having FSE of 50% and 40%
respectively; core 2 runs task C that has a FSE of 40%. In this case
core 1 can ideally scale its frequency to 90% of its maximum value,
while core 2 can scale it to 40%. No better tasks mapping exists that
further reduces energy/power dissipation. In this situation, due to
the different power consumed, temperature of core 1 will be higher
than temperature of core 2. As such, a thermally balanced condi-
tion can be achieved by periodically migrating task B from the first
core to the second core [16] (as represented in Figure 1.b), obtain-
ing, on average, an equalized workload on the two cores (i.e., 40%
+50%/2 = 65%). If the temperature variations caused by migrations
are slower than the migration period, a temperature close to the av-
erage workload (i.e, 65%) will be achieved on both cores. Clearly,
this is a simplified case. The challenge of a thermal balancing algo-
rithm is the selection of the task sets to be migrated back and forth
between two or more cores so that temperature is balanced while

TASK A
FSE LOAD

40%

TASK C
FSE LOAD

40%

LOAD
FREQUENCY

100 %

50 %

0 %
PROC 1 PROC 2

TASK A
FSE LOAD

40%

TASK C
FSE LOAD

40%

TASK B
FSE LOAD

50%

PROC 1 PROC 2

LOAD
FREQUENCY

100 %

50 %

0 %

TASK MIGRATION

TASK B
FSE LOAD

50%

a) b)

Figure 1: Simple thermal balancing example

keeping migration costs bounded.
In this section we first describe the thermal balancing algorithm,

then we discuss the implementation of the task migration infras-
tructure needed to support the policy implementation.

3.1 Thermal Balancing Algorithm
The thermal balancing strategy we propose in this paper is in-

spired by MiGra [2]. To prevent impact on QoS caused by migra-
tion, MiGra is based on run-time estimation of migration costs to
filter migration requests driven by temperature differences between
cores. We tuned MiGra by including migration costs caused by the
actual migration infrastructure. These costs, as explained later in
this section, are mainly due to data transfer and synchronization
between migration daemons. Moreover, in our implementation Mi-
Gra lies on top of a dynamic voltage/frequency scaling (DVFS)
policy [5]. Thus, the power consumption of a task is proportional
to its load.

The rationale of the strategy we implemented is to bound the
temperature of each processor around the current mean tempera-
ture, trying to minimize the overhead in terms of number of mi-
grated tasks and amount of data transferred due to migrations. A
maximum distance of the temperature of each processor from the
current average temperature is defined, identifying a range of al-
lowed temperatures for each single processor between an upper and
a lower threshold. It must be noted that these thresholds are not re-
lated to the temperature limit defined by the system designer to pre-
vent thermal runaway. Note that thermal runaway can be managed
by using stopping the core when it reaches a temperature above a
predefined panic threshold. The operating point of our strategy is
below this threshold because it is aimed at reducing temperature
gradients.

Each time the temperature of a processor reaches the upper thresh-
old, a migration is triggered so that a set of tasks is moved away
from that processor to another processor having a temperature be-
low the current average temperature. On the other side, each time
the temperature of a processor reaches the lower threshold, a mi-
gration is triggered so that a set of tasks is moved away from that
processor to another processor having a temperature above the cur-
rent average temperature.

To reduce the amount of computation needed to select the tasks
to move, the algorithm moves tasks only between two processors
at a time. This means that the processor that triggers the migration
(e.g. a hot one) will select only one target processor (e.g. a cold
one) in order to balance the workload between them. A fundamen-
tal constraint of the thermal balancing strategy we propose is that it
reduces thermal gradient without impacting energy dissipation.

The algorithm consists of two phases. In first phase the candi-
date processors (source and target) are selected, while in the sec-
ond phase the task sets to be exchanged are defined. The first phase
works as follows. If all the following three conditions are verified
dst processor becomes a candidate to exchange workload with src
processor:

TASK RE-CREATION

TASK REPLICATION

Figure 2: Migration cost as a function of task size for task-
replication and task-recreation.

• If the source is warm, the destination processor has to be
cold, and viceversa: (tsrc − tmean) ∗ (tdst − tmean) < 0

• If the frequency of the source processor is above the thresh-
old frequency, the frequency of the destination processor has
to be below it, and viceversa: (fsrc − fmean) ∗ (fdst −
fmean) < 0

• The total power wasted by the two processors after the mi-
gration has to be lower than the total power wasted by the two
processors before the migration: (f2

src + f2
dst)before migr ≥

(f2
src + f2

dst)after migr

The selection of the number of tasks and the final target proces-
sor depends on the evaluation of migration costs. We considered
a cost function which is the product of the amount of data moved
due to the migration times the frequency of migrations. To estimate
the migration frequency we can consider that, for a given temper-
ature difference between two processors, the need of triggering a
new migration is proportional to the difference between the current
temperature of the processor target of the migration and the average
temperature of the chip. The target processor (tgt) of the migration
is selected using equation 1:

tgt :

∑I
i (C

src
i) +

∑J
j (Ctgt

j))

(ttgt − tmean)2
≡ MIN (1)

Where Csrc
i is the amount of data to move for the i − th of I

tasks running on the source processor, Ctgt
j is the amount of data

to move for the j − th of J tasks running on the tgt processor.
An exhaustive approach where a full search is performed by

comparing the migration costs of all the possible combinations of
tasks is not practical. For this reason, a reasonable approximation
can be introduced, by considering the effect of migration of a task
on the temperature balancing decreases together with its load. This
leads to the fact that we can limit the number of tasks to be consid-
ered only to the few tasks having the highest load.

3.2 Middleware Support for Task Migration
In this work we focus on a homogeneous architecture such as

the one shown in Figure 3.a. The architectural template we con-
sider is based on 32-bit RISC processors without memory man-
agement unit (MMU) accessing cacheable private memories and a
single non-cacheable shared memory. This architecture addresses
the scalability issues proper of symmetric multiprocessors that limit
the number of integrable cores. It follows the structure envisioned
for non-cache-coherent MPSoCs [7, 15].

On the software side, each core runs its own instance of the
uClinux OS [10] in the private memory. The uClinux OS is a
derivative of Linux 2.4 kernel intended for microcontrollers with-
out MMU. Each task is represented using the process abstraction,
having its own private address space. As a consequence, commu-
nication has to be explicitly carried on using a dedicated shared
memory area on the same on-chip bus. The OS running on each
core sees the shared area as an external memory space.

The software abstraction layer is described in Figure 3.b. Since
uClinux is natively designed for single-processor environments, we
added the support for interprocessor communication in the mid-
dleware. Then, on top of the local OSes we developed a layered
software infrastructure to provide and efficient parallel program-
ming model for MPSoC-MPOS software developers, including a
task migration support layer.

Task Migration Support
In our implementation, migration is allowed only at predefined
checkpoints, that are provided to the user through a library of func-
tions together with message passing primitives. A so called master
daemon runs in one of the cores and takes care of dispatching tasks
on the processors.

We implemented a migration mechanisms that differs in the way
the memory is managed. A first version, based on a task-recreation
strategy, which kills the process on the original processor and recre-
ates it from scratch on the target processor. This strategy only
works in operating systems supporting dynamic loading, such as
uClinux. Task recreation is based on the execution of fork-exec sys-
tem calls that takes care of allocating the memory space required
for the incoming task. To support task recreation on an architecture
without MMU performing hardware address translation, a position
independent type of code (called PIC) is required to prevent the
generation of wrong references of pointers, since the starting ad-
dress of the process memory space may change upon migration.
Unfortunately, PIC is not supported by the target processor we are
using in our platform (microblazes) [17].

Due to the above limitation, we implemented an alternative mi-
gration strategy where a replica of each task is present in each lo-
cal OS, called task-replication. Only one processor at a time can
run one replica of the task. While in one processor the task is exe-
cuted normally, in the other processors it is in a queue of suspended
tasks. As such, a memory area is reserved for each replica in the
local memory, while kernel-level task-related information are al-
located by each OS in the Process Control Block (PCB) (i.e. an
array of pointers to the resources of the task). Therefore, task repli-
cation is suitable for deeply embedded operating systems without
dynamic loading because the absolute memory position of the pro-
cess address space does not change upon migration, since it can be
statically allocated at compile time. In fact, even if this technique
leads to a waste of memory for migratable tasks, it has the advan-
tage of being faster, since it cuts down on memory allocation time
with respect to a task recreation.

A quantification of the memory overhead due to task replication
is shown in Figure 2. In this figure, the costs is shown in terms of
processor cycles needed to perform a migration as a function of the
task size. In both cases, part of the migration overhead is due to the
amount of data transferred through the shared memory. Moreover,
for the task recreation technique, there is another overhead due to
the additional time required to re-load the program code from the
file system; thus, the offset that appears between the two curves.
Moreover, the task recreation curve has a larger slope due to the
large amount of memory transfers, which leads to an increasing
contention on the bus. Hence, the contribution on the execution
time increases as file size increases in comparison to the task repli-

tile 0

processor
private

memory cache

shared
memory

semaphores
peripheral

interrupts
peripheral

tile N-1

processor
private

memory cache

PROCESSOR N

COMMUNICATION & SYNCHRONIZ ATION

TASK 1 TASK MTASK 2

PROCESSOR 1

OP. SYST. NOP. SYST. 1

PRIVATE MEM 1 PRIVATE MEM N

SHARED
MEMHW

OS/
MWARE

APPL .

TASK MIGRATION

a) b)
Figure 3: a) Target hardware architecture; b) Scheme of the software abstraction layer.

Figure 4: Overview thermal emulation framework

cation case.
During execution, when a task reaches a user-defined check-

point, it checks for migration requests performed by the master
daemon. If the migration is taken, the task is either suspended or
killed (depending on the strategy); thus, waiting to be deallocated
and restored on another processor from the migration middleware.
When the master daemon decides to migrate a task, it signals to the
slave daemons of the source processor the migration of the task.
Then, a dedicated shared memory space is used as a buffer for the
task context transfer. To assist migration decision, each slave dae-
mon writes in a shared data structure the statistics related to local
task execution (e.g. processor utilization and memory occupation
of each task), which are periodically read by the master daemon.

4. THERMAL EMULATION FRAMEWORK
Our thermal balancing strategy needs to be evaluated in real-

istic MPSoC-MPOS architectures. For this evaluation we need
cycle-accurate models to extract detail statistics for hardware com-
ponents, operating system and middleware operations, while long
real-life workloads from streaming applications are executed. Thus,
in this work we have built a complete estimation framework ex-
tending the flexible HW/SW FPGA-based hardware emulation in-
frastructure presented in [2]. An overview of the whole current
framework built in this work is presented in Figure 4. Using this
framework, we can can extract thermal statistics from the proces-
sors, I-cache and D-caches and external memory accesses.

The system can be scaled to any number of cores sub-systems

Figure 5: Emulated MPSoC floorplan

by using appropriate FPGAs, in this work we used a Virtex-2 Pro
vp30 board [17]. Then, as Figure 4 shows, a specialized thermal
monitoring subsystem is included using hardware sniffers, a vir-
tual clock management peripheral and a dedicated Power PC that
implements the extraction of statistics through a UART port. In
Table 1, we summarize the values used for the components of our
emulated MPSoC. These values have been derived from industrial
power models for a 0.09 µm CMOS technology. The energy fig-
ures for each component are provided to a software thermal library
running on a host PC, which is based on the Hotspot thermal anal-
ysis tool [13]. This library calculates the temperature of each tridi-
mensional cell of the emulated MPSoC floorplan (Figure 5) and the
temperature of each processor is visible through shared memory
locations for our uClinux-based MPOS, which applies the thermal
balancing policies to the system (see Section 5 for more details).
The update of memory locations with thermal figures occurs every
10 ms to guarantee accurate thermal monitoring.

Using Floorplan 5, we compare two different thermal packages.
The first packaging solution was derived from real-life streaming
SoCs [6] for mobile embedded targets, where temperature rising of
around 10 degrees Centigrades requires few seconds to take place.
In addition, our second packaging solution models highly vari-
ant (i.e., high-performance) SoCs from the thermal gradient view-
point [13]; thus, significant temperature rising effects can occur in
less than a second. Our policy is validated against both packaging
solutions.

Table 1: Power of components in 0.09 µm CMOS
Max. Power@500 MHz

RISC32-streaming (Conf1) 0.5W (Max)
RISC32-ARM11 (Conf2) 0.27W (Max)
DCache 8kB/2way 43mW
ICache 8kB/DM 11mW
Memory 32kB 15mW

5. EXPERIMENTAL RESULTS
We have validated our policy onto a 3-core MPSoC where a

multi-task streaming application is currently mapped. The experi-
ments were conducted considering the power figures and two dif-

ferent packaging models described in Section 4. The metrics we
have studied are: i) Spatial and temporal variance of the tempera-
tures of the processors; ii) Average quantity of migrated data and
number of migrated tasks; iii) QoS degradation as the percentage
of frame miss rate. The results are compared with an energy-aware
balancing and a Stop&Go policy [5], which controls processor tem-
perature without exploiting task migration.

5.1 Benchmark application description
To evaluate the effectiveness of the proposed policy we ported to

our system a Software FM Defined Radio (SDR) benchmark, which
is representative of a large class of streaming multimedia applica-
tions.

Figure 6: SDR case study

As shown in Figure 6, the application is composed by various
tasks, graphically represented as blocks. Input data represent sam-
ples of the digitalized PCM radio signal which has to be processed
in order to produce an equalized base-band audio signal. In the first
step, the radio signal passes through a Low-Pass-Filter (LPF) to cut
frequencies over the radio bandwidth. Then, it is demodulated by
the demodulator (DEMOD) to shift the signal at the baseband and
produce the audio signal. The audio signal is then equalized with
a number of Band-Pass-Filters (BPF) implemented with a parallel
structure. Finally, the consumer (Σ) collects the data provided by
each BPF and makes the sum with different weights (gains) in order
to produce the final output. Communication among tasks is done
using message queues, each task reads data from its input queue
and sends the results to the output queue, where the next task in the
software pipeline reads them.

5.2 Policy evaluation and comparison
The following policies were applied on the SDR benchmark:
Energy-Balancing. This policy maps the tasks of the SDR ap-

plication such as their energy consumption is balanced [1] among
the cores. Energy is computed from the frequency and voltage im-
posed by the tasks running, which are dynamically adjusted using
a DVFS algorithm [5].

Stop&Go. This policy prevents thermal runaway, i.e., it shuts
down a core when it reaches a panic temperature threshold. In its
original version [5], core execution is resumed after a predefined
timeout. We modified this policy to fairly compare it with our ther-
mal balancing algorithm by using the upper threshold of our al-
gorithm as the panic threshold, and our lower threshold to define
when to switch the core on instead of timing out.

Migration-based Thermal Balancing. This is our proposed
policy in this paper. To perform a fair comparison between the
policies, we started from a statically energy-balanced configuration
for both Stop&Go and our policy. This configuration is described
in Table 2 where names, loads and running frequencies for each
task are detailed. Our goal is to demonstrate that thermal balanc-
ing reduces thermal gradients in comparison to an already energy-
balanced condition without impacting QoS.

Mobile embedded targets.
In the first set of experiments we evaluate the behavior of our pol-
icy. To this end, we tested it in our emulation platform using the 3-
core configuration and thermal package derived from 90nm cores [6]
for real-life streaming SoCs [6] (Section 4). After a first execution

Core / freq. Task Load [%]

Core 1 (533 MHz) BPF1 36,7
DEMOD 28,3

Core 2 (266 MHz) BPF2 60,9
Σ 6,2

Core 3 (266 MHz) BPF3 60,9
LPF 18,8

Table 2: Application mapping

phase (12.5 sec), the temperatures of the three cores gets stable.
However, the temperature is not balanced, i.e. 10 degrees Centi-
grades exist between the hottest (core 1) and the coolest core (core
3). This thermal configuration is due to the application of DVFS
to each core. Moreover, although core 2 and 3 have the same
frequency, their temperatures differ because of the different heat
spreading capabilities due to their position in the floorplan 5. Thus,
in our experiments, we trigger our task-migration based policy to
achieve thermal balancing after this initial phase.

When thermal balancing is applied, each time a core reaches the
upper threshold (set to ± 3 degrees more than the average temper-
ature), a migration is triggered, one task is moved to a colder core,
and the temperature becomes balanced for all cores within 1 second
of execution of the SDR application. Thus, showing the efficacy of
our policy to reach temperature balancing in streaming SoCs [6].
Moreover, our results indicate that the temperature of the hottest
core passes the upper threshold while balancing the temperature
for a very limited time (less than 400 ms).

A quantitative evaluation and comparison among the three poli-
cies is provided in the following experiments for the same packag-
ing configuration. Figure 7 shows the temperature standard devia-
tion for the three policies as a function of the threshold values. The
X-axis indicates the distance of upper and lower threshold from the
mean temperature. As this figure shows, the temperature deviation
increases with the threshold. Thus, our policy is more effective
in reducing temperature deviation than other techniques because it
acts on both hot and cold cores. In particular, Stop&Go does not
change the temperature of the cold cores.

Figure 7: Temp. standard deviation for embedded SoCs

Then, Figure 8 shows the number of deadline misses as a func-
tion of the threshold values. As shown, our policy leads to few
deadline misses while Stop&Go suffers a higher value of missed
frames. Deadline misses may be caused by frozen tasks during
migration; hence, interprocessor queues are depleted during migra-
tion, and if the queue of the last stage gets empty a deadline miss
occurs. However, as Figure 8 illustrates, migration is lightweight
and fast enough to limit this drawback. In fact, missed frames
appear only for the minimum threshold considered in our experi-
ments. Furthermore, we observed that the average queue level does
not change because of migration; thus, a queue size handling ther-

mal balancing can always be found and the SDF application can
sustain thermal balancing without QoS impact, i.e., the minimum
queue size to sustain migration in our experiments was 11 frames.
Hence, this buffering size is feasible for streaming applications.

Figure 8: Deadline misses for the embedded mobile system

Figure 9: Standard deviation the high performance SoCs
High-performance embedded targets.

To stress our policy when temperature variations are faster, we re-
peated our experiments using the alternative packaging value for
high-performance systems (see Section 4), where temperature vari-
ations are 6× faster than the previous model.

Figure 9 shows the standard deviation of the temperature for the
three policies. The energy balancing policies achieve very poor
results and the modified Stop&Go policy behaves better in terms
of temperature deviation, but it causes a large amount of deadline
misses (Figure 10). On the contrary, our algorithm makes temper-
ature oscillate more than Stop&Go, but causes a lot less deadline
misses. Moreover, our algorithm starts behaving significantly bet-
ter than Stop&Go when the threshold increases, as less migrations
are triggered. Also, we observed that Stop&Go causes less dead-
line misses with the fast thermal model than with the slow one, due
to the faster speed the lower threshold is reached after shutdown.
From these experiments, we can conclude that pure software tech-
niques cannot handle fast temperature variations, and a hardware-
software co-design approach is needed.

Finally, Figure 11 depicts the average number of migrations per
second performed by our algorithm for both mobile embedded and
high-performance systems. As expected, the number of migrations
is higher for high-performance systems. However, as each migra-
tion implies a transfer of 64 Kbytes of data (the minimum memory
space allocated by the OS), the required three migrations per sec-
ond are equivalent to 64∗3 = 192 Kbytes per second, which means
that our task migration policy implies only a negligible overhead.

6. CONCLUSIONS
In this paper we have proposed and implemented a lightweight

thermal balancing policy that reduces on-chip temperature gradi-

Figure 10: Deadline misses for high-performance systems

Figure 11: Migrations per sec. for both systems

ents via task migration. Our validation using a software defined
radio benchmark, executed on a cycle-accurate thermal-aware em-
ulation infrastructure, has proved that this policy effectively uses
run-time workload and thermal information to balance the tempera-
ture in streaming computing architectures, while keeping migration
costs and deadline misses bounded.

7. REFERENCES
[1] F. Bellosa, et al. Event-driven energy accounting for dynamic thermal

management. Proc. COLP, 2003.
[2] Omitted for blind review
[3] P. Chaparro, et al. Understanding the thermal implications of multi-core

architectures. TPDS, 2007.
[4] J. Donald, et al. Power efficiency for variation-tolerant multicore processors.

Proc. ISLPED, 2006.
[5] J. Donald, et al. Techniques for multicore thermal management: Classification

and new exploration. Proc. ISCA, 2006.
[6] Freescale, i.mx31 multimedia applications processors, 2003.

www.freescale.com/imx31.
[7] L. Friebe, et al. Hibrid-soc: A SoC architecture with two multimedia dsps and a

risc core. Proc. SOC, 2003.
[8] J. Li, et al. Power-performance implications of thread-level parallelism in chip

multiprocessors. Proc. ISPASS, 2005.
[9] R. Mukherjee, et al.. Physical aware frequency selection for dynamic thermal

management in multi-core systems. Proc. ICCAD, 2006.
[10] uclinux: Embedded linux/microcontroller project, 2006.

http://www.uclinux.org/.
[11] G. Paci, et al. Exploring temperature-aware design in low-power MPSoCs.

Proc. DATE, 2006.
[12] T. Sato, et al. On-chip thermal gradient analysis and temperature flattening for

soc design. Proc. ASP-DAC,2005.
[13] K. Skadron, et al. Temperature-aware microarchitecture: Modeling and

implementation. ACM TACO, 2004.
[14] H. Su, et al. Full chip leakage estimation considering power supply and

temperature variations. Proc. ISLPED, 2003.
[15] P. van der Wolf, et al. Design and programming of embedded multiprocessors:

an interface-centric approach. Proc. CODES+ISSS, 2004.
[16] Y. Xie, et al.. Temperature-aware task allocation and scheduling for embedded

MPSoC design. J-VLSI SPS, 2006.
[17] Xilinx, XUP Virtex-II Pro development system, 2006.

http://www.xilinx.com/univ/xupv2p.html.

