
Fundamenta Informaticae ??? (20??) 1–41 1

DOI 10.3233/FI-2012-0000

IOS Press

Circular Causality in Event Structures

Massimo Bartoletti∗, Tiziana Cimoli∗ and G. Michele Pinna∗

Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Italy

Roberto Zunino
Dipartimento di Matematica, Università degli Studi di Trento and COSBI, Italy

Abstract. We propose a model of events with circular causality, in the form of a conservative exten-
sion of Winskel’s event structures. We study the relations between this new kind of event structures
and Propositional Contract Logic. Provable atoms in the logic correspond to reachable events in our
event structures. Furthermore, we show a correspondence between the configurations of this new
brand of event structures and the proofs in a fragment of Propositional Contract Logic.

Keywords: Event structures, Contracts, Intuitionistic logic.

1. Introduction

Event structures (ES) are one of the classical model for concurrency, since [14, 21]. Notwithstanding
the variety of ingredients appeared in the literature, ES are at least equipped with a relation (written `
in [21]) modelling causality, and another one modeling non-determinism (usually rendered in terms of
conflicts or consistency). Extensions to ES often use other relations to model other kind of dependencies,
e.g. or-causality [3]. ES can provide a basic semantic model for concurrent systems, by interpreting the
enabling {a} ` b as: “event b can be done after after a has been done”.

For instance, consider the following scenario. Alice has an apple, and Bob has a banana. The goal
of Alice and Bob is to trade their goods. Since Alice and Bob do not trust each other, before exchanging
their fruits they issue two contracts. The contract of Alice is formalised as an ES with enabling ∅ ` a,
meaning that Alice takes the first step in this trade, by giving the apple (modelled by event a) to Bob.

∗Work partially supported by Aut. Region of Sardinia under grants L.R.7/2007 CRP-17285 (TRICS), P.I.A. 2010 Project “Social
Glue”, and by MIUR PRIN 2010-11 project “Security Horizons”.

Bob’s contract is an ES with enabling {a} ` b, meaning that Bob will wait for the apple, before giving
Alice the banana (modelled by event b).

The composition of the above two contracts results in an ES E0 with enablings:

E0 : ∅ ` a {a} ` b

Intuitively, in the composed contract Alice and Bob have an agreement, because when both partici-
pants behave as prescribed by their contracts, a configuration is reached where they both have fulfilled
their objectives: Alice will receive a banana, and Bob will receive an apple. Technically, here the agree-
ment is represented by the ES E0 having the configuration {a, b}.

However, it seems interesting to study which guarantees are provided by the two contracts considered
in isolation; that is, we wonder what happens if a participant advertises her contract in an environment
where (possibly malicious) participants can play arbitrary contracts. Intuitively, Bob is protected by his
contract, because whatever opponent he interacts with, Bob will receive an apple before giving away his
banana. Instead, Alice is not protected by her contract: indeed, the enabling ∅ ` a forces Alice to give
her apple away even when nothing is expected in exchange.

Consider now a variant of the above scenario, where Alice changes her contract into {b} ` a. Now,
the composition of Alice’s and Bob’s contracts is:

E1 : {b} ` a {a} ` b

Both participants are now protected, but an agreement is no longer possible: indeed, none of the
events a or b will ever be enabled, because of the circularity between the requirements in the contracts.
Technically, the only configuration of the ES E1 is the empty one.

A main result in [5] is that, in a model of contracts based on ES, agreement and protection are
mutually exclusive: that is, whenever an agreement exists, some of the participants are not protected.
Roughly, the problem is that, when the offers of the participants mutually depend on their requests, the
participant which risks in doing the first step is not protected.

The solution proposed in [5] to reconcile agreements with protection is an extension of Winskel’s ES,
called ES with circular causality (in short, CES) with a new enabling relation, denoted by . Intuitively,
a circular enabling {b} a models that “event a can be done in exchange of the promise that b will
eventually be done”.

In our trading scenario, Alice can now revise her contract as {b} a, which together with Bob’s
contract gives the CES:

E2 : {b} a {a} ` b

Like in the scenario modelled by E0, Alice must take the first step. An agreement exists, because after
Alice’s first step, Bob is obliged to give her the banana (technically, {a, b} will be a configuration of E2).
However, differently from E0, Alice is now protected: when composed with a contract which does not
promise b, Alices’ contract {b} a will prescribe her no obligations.

Contribution. In this paper we study event structures with circular causality from a foundational point
of view. The structure of the paper follows.

Section 2 introduces CES, together with some illustrative examples.

In Section 3 we state some of their basic properties, and we relate them to Winskel’s ES. In particular,
we show that the configurations of CES still enjoy the coherence and finiteness properties of Winskel’s
ES, though they are not coincidence-free, which is correct from our point of view because of the presence
of circular dependencies. For instance, the configurations of the CES E2 are the empty one and {a, b};
coincidence-freeness would have required an “intermediate” configuration which only contains one of
the two events. The circular dependency between a and b requires that in a configuration where one of
the two events happens, also the other one happens.

The behaviour of a CES E is characterised as a set of sets of events (denoted by FE), which satisfies
coherence and finiteness. Any set of sets enjoying such properties is called quasi-family of configura-
tions. We show that for all quasi-families of configurations F , a CES Ê(F) without `-enablings exists
the configurations of which are exactly those in F , that is F = F

Ê(F). This strengthens a result in [21],

where an ES Ê(F) is constructed from a family of configurations F (i.e. a quasi-family also satisfying
coincidence-freeness) such that F = F

Ê(F).
Section 4 studies reachable events, i.e. those events which belong to some configuration. In the case

of conflict-free CES, we show an inductive characterisation of the reachable events, which coincides with
the extensional one. We then present a polynomial-time algorithm for constructing the set of reachable
events of finite, conflict-free CES.

Section 5 discusses operational semantics for CES. We first present an LTS where labels are events,
and states are pairs (C,X) where C is the set of events fired so far, while X is the (least) set of events
taken “on credit”. For instance, in the CES E2 we can fire one of the two events a or b even in the
absence of a causal justification, by recording it in the credits. This LTS allows for firing each event not
in conflict with those already performed. Thus, we can obtain traces where the credits are not eventually
honoured. For instance, in E2 the trace ab honours the credits, while ba does not. Intuitively, in the last
trace b is not justified in the initial state, so we must take it on credit; the only way to remove it from
the credits would be through a circular enabling of the form X b, which is not present in E2. We then
present a less liberal LTS as a refinement of the previous one where all and only those events which lead
to honoured traces can be fired. The refined LTS preserves the reachable events.

In Section 6 we study some relations between CES and the Propositional Contract Logic (PCL)
introduced in [7]. In particular, we present two encodings from CES to PCL. The first encoding [·]R
maps conflict-free CES into Horn PCL theories. We show that an event is reachable in a CES E if and
only if it is provable in PCL under the theory [E]R . Together with the results from Section 4, this relation
provides us with an polymonial-time algorithm for provability in Horn PCL theories (whereas provability
in the general case is PSPACE-hard). The second encoding [·]F , which also deals with conflicts, reduces
the problem of deciding if a set of events is a configuration to provability in PCL, i.e. C ∈ FE if and only
if C is provable in PCL under the theory [E, C]F , and [E, C]F is consistent.

Finally, in Section 7 we conclude and discuss some related work.

Although our main motivation for introducing CES is to provide a semantical model of contracts, the
present paper does not feature a theory of contracts. For instance, we do not formalise here the notion of
contract composition, and those of agreement and protection intuitively presented above. Rather, in this
paper we focus on CES as a concurrency model by itself, in the same spirit of other extensions of event
structures, e.g. [8, 3]. The foundational results provided by this paper are exploited in [5, 9] to develop a
theory of contracts based on CES, and in particular to formalise the notions of agreement and protection.

All the proofs of our statements are contained either in the main body of the paper, or in Appendixes.

2. Event structures with circular causality

Definition 2.1. An event structure with circular causality (CES) is a quadruple E = (E,#,`,) where:

• E is a set of events,

• # ⊆ E × E is an irreflexive and symmetric relation, called conflict relation. We say that a set
X ⊆ E is conflict-free (CF (X) in symbols) whenever ∀e, e′ ∈ X.¬(e#e′). We denote with
Con the set {X ⊆fin E | CF (X)},

• ` ⊆ Con × E is the enabling relation,

• ⊆ Con × E is the circular enabling relation,

The relations ` and are saturated, i.e. for all X,Y ∈ Con and for ◦ ∈ {`,}:

X ◦ e ∧ X ⊆ Y =⇒ Y ◦ e

We say that E is finite when E is finite; we say that E is conflict-free when the conflict relation is empty.

Notation 2.2. For a sequence σ = 〈e0 e1 . . .〉 (possibly infinite), we write σ for the set of events in σ.
We write σi for the subsequence 〈e0 . . . ei−1〉. If σ = 〈e0 . . . en〉 is finite, we write σ e for the sequence
〈e0 . . . en e〉. The empty sequence is denoted by ε.

Notation 2.3. We adopt the following conventions: ` e stands for ∅ ` e; we write a ` b for {a} ` b.
For a finite, conflict-free set X , we write X ` Y for ∀e ∈ Y. X ` e. For an infinite, conflict-free X , we
write X ` Y as a shorthand for ∃X0 ⊆fin X. X0 ` Y . All the abbreviations above also apply to .

A configuration C is a “snapshot” of the behaviour of the system. In [22], a set of events C is a
configuration if and only if for each event e ∈ C it is possible to find a trace for e in C, i.e. a finite
sequence of events containing e, which is closed under the enabling relation:

∀e ∈ C. ∃σ = 〈e0 . . . en〉. e ∈ σ ⊆ C ∧ ∀i ≤ n. {e0, . . . , ei−1} ` ei
We refine the notion in [22] to deal with circular causality. Intuitively, for all events ei in the sequence

〈e0 . . . en〉, ei can either be `-enabled by its predecessors, or -enabled by the whole sequence, i.e.:

∀e ∈ C. ∃σ = 〈e0 . . . en〉. e ∈ σ ⊆ C ∧ ∀i ≤ n.
(
{e0, . . . , ei−1} ` ei ∨ σ ei

)
Clearly, the configurations of a CES without -enablings are also configurations in the sense of [22],

hence CES are a conservative extension of Winskel’s general ES. Differently from ES, if C is a finite
configuration of a CES, and σe is a trace for all the events in C, not necessarily σ is a trace for C \ {e}
(see e.g., E2 in Fig. 1).

To allow for reasoning about sets of events which are not configurations, we introduce the auxiliary
notion of X-configuration in Def. 2.4 below. In an X-configuration C, the set C can contain an event e
even in the absence of a justification through a standard/circular enabling — provided that e belongs to
the setX . This allows, given anX-configuration, to add/remove any event and obtain a Y -configuration,
possibly with Y 6= X . We shall say that the events in X have been taken “on credit”, to remark the
fact that they may have been performed in the absence of a causal justification. Configurations (i.e.
∅-configurations) represent sets of events where all the credits have been “honoured”.

a b
E1

a b

E2

c

b

a

E3

c

db

a

E4

b

c

a

E5

Figure 1. Five CES. We adopt the following graphical notation for depicting CES: they are denoted as directed
hypergraphs, where nodes stand for events. An hyperedge from a set of nodes X to node e denotes an enabling
X ◦ e, where ◦ = ` if the edge has a single arrow, and ◦ = if the edge has a double arrow. A conflict a#b is
represented by a waved line between a and b.

Definition 2.4. (Traces and configurations)
Let E = (E,#,`,) be a CES, and let X ⊆ E. A conflict-free sequence σ = 〈e0 . . . en〉 ∈ E∗ without
repetitions is an X-trace of E iff:

∀i ≤ n. (ei ∈ X ∨ σi ` ei ∨ σ ei) (1)

For all C,X ⊆ E we say that C is an X-configuration of E iff CF (C) and:

∀e ∈ C. ∃σ X-trace. e ∈ σ ⊆ C (2)

The set of all X-traces of E is denoted by TE(X), abbreviated as TE when X = ∅. The set of all
X-configurations of E is denoted by FE(X), or just FE when X = ∅.

Example 2.5. Consider the five CES in Fig. 1.

(1) E1 has enablings ` a, b b, and conflict a#b. By Def. 2.4, ∅, {a}, {b} ∈ FE1 , but {a, b} 6∈ FE1 .

(2) E2 has enablings a ` b and b a. Here ∅, {a, b} ∈ FE2 , while neither {a} nor {b} belong to FE2 .
Also, FE2({b}) = {∅, {b}, {a, b}}, and FE2({a}) = {∅, {a}, {a, b}}.

(3) E3 has enablings {a, b} ` c, c a, and c b. The only non-empty configuration of E3 is {a, b, c}.

(4) E4 has enablings {a, b} c, {a, b} d, c ` a, and d ` b. We have that {a, b, c, d} ∈ FE4 . Note
that, were one (or both) of the turned into a `, then the only configuration would have been ∅.

(5) E5 has enablings a ` b, a ` c, b a, and conflict b#c. We have that {a, b} ∈ FE5 while {a, c} is
not a configuration, but it is an {a}-configuration.

Example 2.6. (Dining retailers [7])
Around a round table, n cutlery retailers are about to have dinner. At the center of the table, there is a
large dish of food. Despite the food being delicious, the retailers cannot start eating right now. To do
that, and follow the proper etiquette, each retailer needs a complete cutlery set, consisting of n pieces of
different kinds. Each of the n retailers owns a distinct set of n pieces of cutlery, all of the same kind.
The retailers start discussing about trading their cutlery, so that they can finally eat.

We formalise this scenario as follows. We name the retailers A1, . . . ,An. Each retailer Ai initially
owns n pieces of kind i. For all j 6= i, the event ei,j models Ai giving a piece of cutlery to retailer Aj .

Retailer Ai offers n − 1 pieces of his cutlery (of kind i) in exchange for n − 1 pieces of cutlery of the
other kinds. The behaviour of retailer Ai is modelled by the following n− 1 enablings:

Ai : {ej,i | j 6= i} ei,k for all k 6= i

In the CES containing the enablings of all retailers, the set of events E = {ei,j | i, j ∈ 1..n and i 6= j} is
a configuration, hence each retailer can eventually eat. Note, instead, that any strict subset of E (except
the empty one) is not a configuration. This models the fact that, once the retailers have started exchanging
their cutlery, they are committed to continue until everyone can eat.

Following [22], we assume the axiom of finite causes, that is, we always require an event to be
enabled by a finite chain of events. For instance, consider the event structure:

· · · en → · · · e3 → e2 → e1 → e0

For e0 to happen, an infinite number of events must have happened before it. As in [22], we do not
consider the set {ei | i ≥ 0} as a configuration, because a justification of e0 would require an infinite
chain. Similarly, in the CES:

a0 � a1 � a2 � a3 · · · � an · · ·

where, for a0 to happen, an infinity of events must happen either before or after it, the set {ai | i ≥ 0}
is not a configuration according to Def. 2.4, because a justification of a0 would require an infinite chain.
This choice is motivated by the following (less abstract) example.

Example 2.7. (Money lender)
Suppose Bob has an old debt of e1 with Alice, but he has no money. Hence he asks Alice to lend him
e1 to honour his debt. Alice agrees, provided that for this e1, Bob will give her back e2. When Bob
receives the money, he honours his old debt, but now he owes Alice e2. Since he has no money, he asks
again Alice to lend him e2. Alice agrees, provided that Bob will give her back e3. Every time he asks
Alice to lend him ei, Alice requires him to give back e(i + 1). We can model this scenario as a CES
with events ai and bi (for i ≥ 1), where ai represents Alice lending i euros to Bob, and bi represents Bob
giving i euros to Alice. The enablings are bi+1 ai and ai ` bi, for all i ≥ 1. Graphically:

b1 ← a1 � b2 ← a2 � b3 · · ·

An infinite execution σ∞ could have the form 〈a1 b1 a2 b2 a3 b3 a4 b4 . . .〉. Note that in σ∞ each event
ai is -enabled by σ = 〈a1 b1 . . . ai bi ai+1 bi+1〉, but σ is not a trace because ai+1 is not justified.
Indeed, no finite subsequence σ of σ∞ allows Bob to honour all the debts in σ. In the same spirit of [22],
Def. 2.4 requires for each event in a configuration a finite justification, either in the past or in the future.
Accordingly, σ∞ is not a configuration.

3. Basic results on traces and configurations

In this section we study some basic properties of event structures with circular causality. Unless stated
otherwise, in all the statements below in this section we assume a CES E = (E,#,`,). When clear
from the context, we will omit the index E from FE(X) and TE(X).

Definition 3.1. For all sequences σ, let σ↓ be the sequence obtained by eliminating from σ all the
duplicate events, starting from the right. Formally, we define σ↓ inductively as follows:

ε↓ = ε (σa)↓ = σ↓ if a ∈ σ (σa)↓ = (σ↓) a if a 6∈ σ

Every conflict-free sequence σ↓ trivially belongs to T(σ), which intuitively means that we can take
every event on credit without worrying about ` and . The concatenation of two X-traces (modulo
eliminating duplicated events) is an X-trace.

Lemma 3.2. For all X,Y ⊆ E, and for all σ, σ′ ∈ E∗,

(a) CF (σ) =⇒ σ↓ ∈ T(σ)

(b) X ⊆ Y =⇒ T(X) ⊆ T(Y)

(c) σ ∈ T(X) ∧ σ′ ∈ T(X) ∧ CF (σσ′) =⇒ (σσ′)↓ ∈ T(X)

Proof:
Direct consequence of equation (1) in Def. 2.4. ut

Since every event in a (possibly infinite) configuration is justified by a (finite) trace, for each finite
subset C0 of a configuration we can concatenate the traces of all the events in C0, and still obtain a trace.

Lemma 3.3. For all C,X ⊆ E:

C ∈ F(X) ⇐⇒ ∀C0 ⊆fin C. ∃σ ∈ T(X). C0 ⊆ σ ⊆ C

Proof:
(⇒) Let C ∈ F(X), and let C0 ⊆fin C. By Def. 2.4, CF (C) and ∀e ∈ C0. ∃σe ∈ T(X). e ∈ σe ⊆ C.
Since C0 is finite, we can concatenate all the (finite, conflict-free) sequences σe obtained above. Let σ′

be the result of such operation, and let σ = σ′ ↓. By iterating 3.2(c) |C0| times, we obtain σ ∈ T(X).
Also, by construction we have that C0 ⊆ σ ⊆ C, from which the thesis follows.

(⇐) Assume that ∀C0 ⊆fin C. ∃σ ∈ T(X). C0 ⊆ σ ⊆ C, and let e ∈ C. By the hypothesis,
since {e} ⊆fin C, there exists σe ∈ T(X) such that e ∈ σe ⊆ C. It remains to prove that CF (C). By
contradiction, assume that ¬CF (C). Then, there would exist C0 ⊆fin C such that ¬CF (C0), and so
by hypothesis there would also exist some σ ∈ T(X) with C0 ⊆ σ. By (1), it must be CF (σ), which
contradicts ¬CF (C0). ut

From Lemma 3.3, we have that when an X-configuration C is finite, there exists an X-trace which
covers all the events of C.

Corollary 3.4. For C a finite set of events, C ∈ F(X) iff there exists σ ∈ T(X) such that σ = C.

If we interpret T as a function from sets of events to sets of traces, we observe that T is monotonic,
i.e. for each X ⊆ Y we have T(X) ⊆ T(Y). Informally, this means that we can arbitrarily enlarge the
credit set of a trace. On the contrary, we cannot reduce the credit set while preserving the traces; for
instance in the CES ` a, a ` b, we have that 〈ba〉 is a {b}- trace but not a ∅-trace. For each trace σ there
exists a least set X such that σ ∈ T(X). This set is constructed as shown below.

Lemma 3.5. Let σ = 〈e0 e1 . . . en〉 ∈ E∗ be a conflict-free sequence without repetitions, and let
X = {ei ∈ σ | σi 6` ei ∧ σ 6 ei}. Then X is the least credit for σ, i.e. σ ∈ T(X) and for all Y such
that σ ∈ T(Y), we have X ⊆ Y .

Proof:
Let σ = 〈e0 . . . en〉, and let X = {ei ∈ σ | σi 6` ei ∧ σ 6 ei}. By Def. 2.4, it is easy to check that
σ ∈ T(X). We will prove that X ⊆ X ′ whenever σ ∈ T(X ′). Assume by contradiction that there exists
e ∈ X such that e 6∈ X ′. By construction we have that X ⊆ σ, thus there exists i such that ei = e. Since
σ ∈ T(X ′), by Def. 2.4 it follows that σi ` ei or σ ei, which contradicts the hypothesis. ut

The following lemma establishes a sufficient condition for preserving the credit set, when appending
a trace to another.

Lemma 3.6. Let σ ∈ T(X) and η ∈ T(X ∪ Y) be such that and CF (σ η). If Y ⊆ σ, or σ ` Y , or
σ Y , then (σ η)↓ ∈ T(X).

Proof:
Let σ = 〈e0 . . . en〉, and let χ = (σ η)↓ = σ 〈en+1 . . . em〉 , where {en+1, . . . , em} = η \σ. By Def. 2.4
we have to prove that, for all i ≤ m, ei ∈ X ∨ χi ` ei ∨ χ ei. We have the following two cases:

• 0 ≤ i ≤ n. Here we can justify ei in χ as it has been justified in σ.

• n < i ≤ m. Here the only relevant case is when ei has been justified by ei ∈ Y \X . Indeed, in all
the other cases we can justify ei in χ as it has been justified in η, by noting that χi ⊇ ηi−n and that
the operator ↓ preserves the order of events. By hypothesis we have Y ⊆ σ or σ ` Y or σ Y .
In the first case, by definition of ↓ it cannot be the case that ei ∈ Y , for any i > n. In the second
case, ei can be justified by σ ` Y . In the third case, ei can be justified by σ Y .

ut

We now study properties of configurations. Some of them derive immediately from analogous prop-
erties of traces. Every set of conflict-free eventsX is anX-configuration; if F is interpreted as a function
from sets of events to sets of sets of events, then F is monotonic, i.e. F(X) ⊆ F(Y) whenever X ⊆ Y .

Lemma 3.7. For all X,Y ⊆ E:

(a) CF (X) =⇒ X ∈ F(X),

(a) X ⊆ Y =⇒ F(X) ⊆ F(Y)

Proof:
For (3.7), for all e in X , let σe = 〈e〉. It is immediate to check that σe ∈ T(X) and e ∈ σe ⊆ X , and so
X ∈ F(X). For (3.7), since X ⊆ Y , then each event e justified with e ∈ X in equation (1) can also be
justified with e ∈ Y , hence the thesis. ut

Differently from what happens in traces, in general for configurations there exists no least setX such
that C ∈ FE(X), as a single configuration may have many different minimal credit sets. For instance,
in a CES E with enablings a ` b, b ` a, we have that {a, b} ∈ FE({a}) and {a, b} ∈ FE({b}), but
{a, b} 6∈ FE(∅). The sets {a} and {b} are minimal credits for {a, b}, but there exists no least credit.

Lemma 3.8. If C ∈ F(X ∪ Y) and C Y , then C ∈ F(X).

Proof:
Let e ∈ C. Since C ∈ F(X ∪ Y), there exists η ∈ T(X ∪ Y) such that e ∈ η ⊆ C. Since C Y ,
by Notation 2.3 there exists a finite subset Z of C such that Z Y . Since Z ⊆fin C ∈ F(X ∪ Y),
by Lemma 3.3 there exists σ ∈ T(X ∪ Y) such that Z ⊆ σ ⊆ C. Let χ = (σ η)↓. By Lemma 3.2(c),
χ ∈ T(X ∪ Y). By saturation, since Z Y and Z ⊆ χ we also have that χ Y . By Lemma 3.5, it
follows that χ ∈ T(X). Since e ∈ χ ⊆ C, we have the thesis. ut

The following lemma allows for simplifying the credit set when joining two configurations. In
item (a), we have an X-configuration C and an X ∪C-configuration C ′. We can then prove that C ∪C ′
is an X-configuration: intuitively, the events in C ′ that were taken on credit from C can be justified with
the credit set X alone, since C ∈ F(X). In item (b), we have an X-configuration C and an X ∪ Y -
configuration C ′ where C ` Y . We can then prove that C ∪ C ′ is an X-configuration: in a trace, to
justify an event e taken on credit from Y , we can posticipate e after the finite subset of C which entails
it. Since C ∈ F(X), this only requires to take on credit the set X . Item (c) is similar to the previous one,
except that now we deal with a circular enabling. We have an X ∪ C ′-configuration C and an X ∪ Y -
configuration C ′ where C Y . We can then prove that C ∪ C ′ is an X-configuration: all the events in
Y will be justified by C, and since C is justified by C ′, C ∪C ′ only requires to take on credit the set X .

Lemma 3.9. For all C,C ′, X, Y ⊆ E such that CF (C ∪ C ′):

(a) C ∈ F(X) ∧ C ′ ∈ F(X ∪ C) =⇒ C ∪ C ′ ∈ F(X)

(b) C ∈ F(X) ∧ C ′ ∈ F(X ∪ Y) ∧ C ` Y =⇒ C ∪ C ′ ∈ F(X)

(c) C ∈ F(X ∪ C ′) ∧ C ′ ∈ F(X ∪ Y) ∧ C Y =⇒ C ∪ C ′ ∈ F(X)

Proof:
For item (a), let e ∈ C ′. Since C ′ ∈ F(X ∪ C), Def. 2.4 prescribes that there exists σe = 〈e0 . . . en〉 ∈
T(X ∪ C) such that e ∈ σe ⊆ C ′, i.e.:

CF (σe) ∧ ∀i ≤ n. (ei ∈ X ∪ C ∨ σei ` ei ∨ σe ei)

Let Ze be the set of ei in σe for which the hypothesis ei ∈ C \X has been used, i.e.:

Ze = {ei ∈ σe | ei ∈ C \X ∧ σei 6` ei ∧ σe 6 ei}

Observe that σe ∈ T(X ∪ Ze). Since Ze ⊆fin C ∈ F(X), by Lemma 3.3 there exists η ∈ T(X) such
that Ze ⊆ η ⊆ C. Let χ = (η σe)↓. Since χ ⊆ C ∪ C ′ and CF (C ∪ C ′) by hypothesis, then CF (χ̄).
Since Ze ⊆ η, Lemma 3.6 gives χ ∈ T(X). Since e ∈ χ ⊆ C∪C ′, we have then proved (2), from which
we conclude that C ∪ C ′ ∈ F(X).

For item (b), let e ∈ C ∪ C ′. We have two cases. If e ∈ C, then the hypothesis C ∈ F(X) directly
gives a trace which satisfies equation (1). So, let e ∈ C ′. Since C ′ ∈ F(X ∪ Y), Def. 2.4 prescribes that
there exists σe ∈ T(X ∪ Y) such that e ∈ σe ⊆ C ′. Notice that σe ∈ T(X ∪ (Y ∩ σe)). Since C ` Y ,
then C ` Y ∩ σe. Then, by Notation 2.3 there exists a finite subset Z of C such that Z ` Y ∩ σe. Since

Z ⊆fin C ∈ F(X), by Lemma 3.3 there exists η ∈ T(X) such that Z ⊆ η ⊆ C. By saturation, since
Z ` Y ∩σe and Z ⊆ η we also have that η ` Y ∩σe. Therefore, Lemma 3.6 gives that (η σe)↓ ∈ T(X).
Since e ∈ (η σe)↓ ⊆ C ∪ C ′, we conclude that C ∪ C ′ ∈ F(X).

For item (c), Lemma 3.7(3.7) yields C ∈ F(X ∪ Y ∪ C ′). Since CF (C ∪ C ′), by item (a) it follows
that C ∪ C ′ ∈ F(X ∪ Y). Since C ∪ C ′ Y , by Lemma 3.8 we conclude that C ∪ C ′ ∈ F(X). ut

We relate Winskel’s ES with CES in Th. 3.14 below. First, we introduce the needed definitions.

Definition 3.10. (Pairwise compatibility)
Let F be a family of sets. We say a subset A of F is pairwise compatible 1 if and only if

∀e, e′ ∈
⋃
A. ∃C ∈ F. e, e′ ∈ C

Definition 3.11. (Families and quasi-families of configurations)
For a set of sets F we define the following three properties:

Coherence If A is a pairwise compatible subset of F, then
⋃
A ∈ F.

Finiteness ∀C ∈ F. ∀e ∈ C. ∃C0 ∈ F. e ∈ C0 ⊆fin C

Coincidence-freeness

∀C ∈ F. ∀e, e′ ∈ C.
(
e 6= e′ =⇒ (∃C ′ ∈ F. C ′ ⊆ C ∧ (e ∈ C ′ ⇐⇒ e′ 6∈ C ′)

)
We say that F is a quasi-family of configurations iff it satisfies coherence and finiteness; if F also satisfies
coincidence-freeness, then we call F a family of configurations. In that case, we say that F is a family of
configurations of E when

⋃
F = E.

A basic result of [22] is that the set of configurations of an ES forms a family of configurations. On
the contrary, the set of configurations of a CES does not satisfy coincidence-freeness. A counterexample
is the CES E2 in Ex. 2.5(2), where {a, b} ∈ F, but there exists no configuration including only a or b.
Indeed, the absence of coincidence-freeness is a peculiar aspect of circularity: if two events are circularly
dependent, each configuration that contains one of them must contain them both.

Theorem 3.12. For all CES E, and for all X ⊆ E, the set FE(X) is a quasi-family of configurations.

Proof:
For coherence, let A ⊆ F(X) be pairwise compatible in F(X). By Def. 3.10:

∀e, e′ ∈
⋃

A. ∃C ∈ F(X). e, e′ ∈ C

1 Note that our definition differs from Winskel’s (Def. 3.4 in [22]). There, a set A ⊆ F is pairwise compatible iff for all
C,C′ ∈ A, there exists D ∈ F such that C ∪ C′ ⊆ D. Clearly, Winskel’s pairwise compatibility implies ours, while the
converse is not true. For instance, consider the family of sets A = {∅, {e0}, {e1}, {e0, e1}, {e0, e2}, {e1, e2}}. Then, A is
pairwise compatible according to Def. 3.10, while it is not according to Winskel’s, because there exists no D ∈ F such that
{e0} ⊆ D and {e1, e2} ∈ D. Clearly, both definitions imply that if A is pairwise compatible, then

⋃
A is conflict-free.

Since C ∈ F(X) implies CF (C), it follows that ¬(e#e′) for all e, e′ ∈
⋃
A, and so CF (

⋃
A). Let

e ∈
⋃

A. Then, there exists C ∈ A such that e ∈ C. Since C ∈ F(X), by Def. 2.4 there exists
σ ∈ T(X) such that e ∈ σ ⊆fin C. Since C ⊆

⋃
A, by Def. 2.4 we can conclude that

⋃
A ∈ F(X).

Finiteness is straightforward by Def. 2.4, since for all e ∈ C ∈ F(X), the set of elements of the
(finite) sequence σ ∈ T(X) such that e ∈ σ ⊆fin C is a configuration in F(X). ut

Despite faithfully representing the legitimate states of a system where all the credits are honoured,
sets of configurations are not a precise semantic model for CES. Indeed, they are not able to discriminate
among substantially different CES, e.g. like the following:

E : a b, b a E′ : a ` b, b a E′′ : a b, b ` a

It is easy to check that the sets of X-configurations of E,E′,E′′ coincide, for all X . This contrasts with
the different intuitive meaning of ` and , which is revealed instead by observing the traces:

TE = {〈ab〉, 〈ba〉} TE′ = {〈ab〉} TE′′ = {〈ba〉}

To substantiate our feeling that configurations alone are not sufficiently discriminating for CES, in The-
orem 3.14 we show that for all CES E there exists a CES E′ without `-enablings which has exactly the
same configurations of E. Therefore, the meaning of `, that is the partial ordering of events, is completely
lost by just observing configurations.

Definition 3.13. Let F be a quasi-family of configurations of a set E. We define the CES Ê(F) =
(E,#, ∅,) as follows:

(a) e#e′ ⇐⇒ ∀C ∈ F. e /∈ C ∨ e′ /∈ C

(b) X e ⇐⇒ CF (X) ∧ X is finite ∧ ∃C ∈ F. e ∈ C ⊆ X ∪ {e}

Theorem 3.14. For all quasi-families of configurations F, we have F
Ê(F) = F.

Proof:
Let F be a quasi-family of configurations.

For (⊆), let C ∈ F
Ê(F). By Def. 2.4 we have CF (C), and for all e ∈ C there exists Ce such that

e ∈ Ce ⊆fin C, and the elements of Ce can be ordered as a trace in T
Ê(F). Since Ê(F) has circular

enablings only, it must be ∀a ∈ Ce. Ce a. Hence, by Def. 3.13(b),

∀a ∈ Ce. ∃Da ∈ F. a ∈ Da ⊆ Ce ∪ {a} = Ce

Since
⋃
{Da | a ∈ Ce} = Ce, the set {Da | a ∈ Ce} is pairwise compatible in F, hence by Theorem 3.12

(coherence) we have that Ce =
⋃
{Da | a ∈ Ce} ∈ F. Again, the set {Ce | e ∈ C} is pairwise

compatible in F, therefore by coherence C =
⋃
{Ce | e ∈ C} ∈ F.

For (⊇), letC ∈ F. By the definition of conflict in Def. 3.13(a), it must be CF (C). By Theorem 3.12
(finiteness) for all e ∈ C there exists Ce ∈ F such that e ∈ Ce ⊆fin C. For all a ∈ Ce, we have that
a ∈ Ce ⊆ Ce ∪ {a} = Ce. Thus, by Def. 3.13(b) it follows that Ce a. Since this holds for all a ∈ Ce,
by Def. 2.4 any ordering σe of the elements of Ce is a trace in T

Ê(F). Therefore, for all e ∈ C we have
found a trace σe ∈ T

Ê(F) such that e ∈ σe = Ce ⊆ C. By Def. 2.4, we conclude that C ∈ F
Ê(F). ut

Corollary 3.15. For all ES E, there exists a CES E′ without `-enablings such that FE = FE′ .

4. Reachable events

Reachable events are those which belong to a configuration. More precisely, an event is X-reachable
when some X-configuration contains it.

Definition 4.1. (Reachable events)
For all CES E, we define the function RE : ℘(E)→ ℘(E) as:

RE(X) =
⋃

FE(X)

We say an event e X-reachable whenever e ∈ RE(X); we say e reachable when e ∈ RE(∅). When clear
from the context, we will omit the index E from RE(X), and just write R for R(∅).

Example 4.2. Consider the CES E2 in Fig. 1, with enablings a ` b and b a. Since {a, b} is a
configuration, then R(∅) = {a, b}. Consequently, both a and b are X-reachable for all X .

Notice that there may not exist a leastX such that e ∈ R(X). For instance, in the CES with enablings
a ` b, b ` a, we have that a is both {a}-reachable and {b}-reachable, but it is not ∅-reachable.

The function R enjoys the following basic properties:

Lemma 4.3. For all X,Y,C ⊆ E:

(a) X ⊆ R(X)

(b) X ⊆ Y =⇒ R(X) ⊆ R(Y)

(c) C ⊆ R(X) ∧ CF (R(C ∪X)) =⇒ R(X) = R(C ∪X).

Item (a) is straightforward. Item (b) establishes the monotonicity of R, which directly follows from
the monotonicity of F. From item (b), it follows that R(X) ∪ R(Y) ⊆ R(X ∪ Y), for all X,Y ⊆ E.
Note that, in general, the converse does not hold: for instance consider the CES with enablings {e1, e2}
a, e1 b and e2 c; then we have R({e1}) = {e1, b}, R({e2}) = {e2, c} and R({e1, e2}) =
{e1, e2, a, b, c}. Item (c) states that if C is X-reachable, then the set of X-reachable events equals to
the set of X ∪ C-reachable events. For instance, in the CES with enablings a ` b, b ` c, we have that
b ∈ R({a}), hence R({a}) = R({a, b}). Note that when choosing C = R(X) in item (c), it follows
that R(X) is a fixed point of R, i.e. R(X) = R(R(X)), provided that the set R(R(X)) is conflict-free.

Example 4.4. Consider the first three CES in Fig. 2.

(1) In E6, we have R(∅) = ∅, and R({a}) = {a, b}. Note that if one weakens the conflict-freeness
requirement in Lemma 4.3(c), and only require CF (C ∪X), then the thesis would no longer hold.
Indeed, by choosing C = {a, b} and X = {a}, we have R(X) = {a, b} and R(C ∪X) = {a, b, c},
which is not conflict-free. Hence Lemma 4.3(c) does not apply, and in fact R(X) 6= R(C ∪X).

(2) In E7, we have R(∅) = ∅, and R({a}) = {a, b, c}. In this case we see that the conflict-freeness
requirement in Lemma 4.3(c) is sufficient but not necessary, since {a, b, c} is not conflict-free, but
nevertheless R({a}) = R(R({a})) = {a, b, c}.

a b c

E6

a

c

b

E7

a

b c

d e

f

E8

a b

c

E9

Figure 2. Four CES.

(3) In E8, we have that R({a}) = {a, b, c, d, e} is not conflict-free. Then, Lemma 4.3(c) does not apply
and in fact R({a} ∪ {c, e}) = {a, b, c, d, e, f}) R({a}).

For conflict-free CES, we can inductively characterize the reachable events. This is done in Def. 4.5
in the form of inference rules.

Definition 4.5. For all X ⊆ E, we inductively define the set R̂(X) as follows:

e ∈ X
e ∈ R̂(X)

(∈R̂)
R̂(X) ` e
e ∈ R̂(X)

(`R̂)
R̂(X ∪ {e}) e

e ∈ R̂(X)
(R̂)

Recall that, by saturation of ` and by Notation 2.3, the premise R̂(X) ` e in rule `R̂ actually means
that there exists a finite set of events e1, . . . , en ∈ R̂(X) such that {e1, . . . , en} ` e (similarly for R̂).
More pedantically, rule `R̂ actually stands for the set of rules:

e1 ∈ R̂(X) · · · en ∈ R̂(X)

e ∈ R̂(X)
if {e1, . . . , en} ` e

Example 4.6. Let us consider the CES E2 of Fig.1. We have the following derivation:

b a

a ` b
a ∈ {a}

a ∈ R̂({a})
(∈R̂)

b ∈ R̂({a})
(`R̂)

a ∈ R̂(∅)
(R̂)

Furthermore, since a ∈ R̂(∅), from rule `
R̂

we also obtain b ∈ R̂(∅).

The inductive characterization of reachable events coincides with Def. 4.1, for conflict-free CES.

Theorem 4.7. For all CES E, and for all X ⊆ E, RE(X) ⊆ R̂E(X), Moreover, if E is conflict-free,
then RE(X) ⊇ R̂E(X).

Notice that, in the presence of conflicts, RE(X) could be strictly contained in R̂E(X). For instance,
in the ES E8 in Fig. 2, the event f is not reachable, but it belongs to R̂(∅). Indeed, the events c and e
(which cause f) are both reachable, but they cannot appear together in a configuration.

We now give an alternative characterization of reachable events for finite conflict-free CES. This
reformulation (Theorem 4.8) yields a polynomial-time algorithm for computing the set R (whereas com-
puting them through the inference rules of Def. 4.5 would give an exponential algorithm). The algorithm
exploits Kleene’s fixed point theorem, by defining the set R as the greatest fixed point of a monotonic
(increasing) function F , defined below.

Theorem 4.8. For all X,Y, Z ⊆ E, let:

GY (Z) = Y ∪ {e | Z ` e}
F (X) = lfpG{e|Xe}

Then, for all finite conflict-free CES E, we have RE = gfpF

Following the characterization provided by Theorem 4.8, an algorithm for constructing RE can be
devised as follows. Let X0 be the set of all events in E. At step 0, we compute X1 = F (X0). This
can be done by interpreting the (minimal) `-enablings of E as a set of propositional Horn clauses, and
then by applying the forward chaining algorithm with input {e | X0 e}. The forward chaining can
be computed in polynomial-time in the number of `-enablings. If X1 = X0, then we have finished, i.e.
X1 = RE. Otherwise, we compute X2 = F (X1) and so on, until reaching a fixed point. In the worst
case, this requires |E| steps, hence we have a polynomial-time algorithm for computing RE.

5. An LTS semantics of CES

In this section we define an operational semantics of CES. This is given in terms of a Labelled Transition
System (LTS), the states of which are pairs (C,X). The first element of such pair is the set of events
occurred so far; the second element is a set of events taken “on credit”. Intuitively, in all the reachable
states (C,X), C is an X-configuration and X is minimal for C.

We will first observe what happens when adding an event e to a trace σ ∈ T(X). It is always true that
σe ∈ T(X ∪ {e}), although X ∪ {e} may not be the least credit for σe. Def. 5.1 below establishes how
the credits of a trace change when adding an event. When Def. 5.1 is instantiated with C = σ and X is
the least credit of σ, then Lemma 5.3 guarantees that ∆(C,X, e) is the least credit for σe. Intuitively, in
Def. 5.1 we first remove from X the set of credits which have been honoured by performing e; then, we
add e unless it is justified.

Definition 5.1. For all C,X ⊆ E and for all e ∈ E, we define:

∆(C,X, e) = (X \ {x ∈ X | C ∪ {e} x}) ∪

{
{e} if C ∪ {e} 6 e ∧ C 6` e
∅ otherwise

Example 5.2. Recall the CES E2 from Fig. 1. The trace 〈a〉 belongs to T({a}), and {a} is its least
credit. Of course 〈a b〉 ∈ T({a, b}), but since b is `-enabled by {a}, it is not necessary to take b on
credit. Moreover, since b a, we can also remove a from the credit set: hence 〈a b〉 ∈ T. Indeed, the
least credit for 〈a b〉 is computed through Def. 5.1 as ∆({a}, {a}, b) = ({a} \ {a}) ∪ ∅ = ∅.

Lemma 5.3. Let σ = σ′e, with e 6∈ σ′ and CF (σ). If σ′ ∈ T(X), then σ ∈ T(∆(σ′, X, e)). Moreover,
if X is the least credit for σ′, then ∆(σ′, X, e) is the least credit for σ.

As noticed in Ex. 5.2, adding events to a trace may reduce the credit set. Also, observe that changing
the order in which events are performed may change the credit set. In particular when an event without
-enablings is fired before its `-justification, it will not be possible to remove it from the credit set by
firing new events. For instance, if in Ex. 5.2 we fire b before a, then we cannot remove b from the credit
set. This allows for correctly recording the events performed in the absence of a causal justification.

Example 5.4. Consider the CES E9 in Fig. 2. The trace 〈ab〉 has least credit {a, b}; by adding the
event c, the least credit for 〈abc〉 becomes {c}.

Definition 5.5. (LTS)
For all CES E, we define the labelled transition system LTSE = 〈S,E,→E〉, where S = Con × Con ,
and the relation→E is defined as follows:

e /∈ C CF (C ∪ {e})
(C,X)

e−→E (C ∪ {e}, ∆(C,X, e))

We say that (C,X) is a reachable state of LTSE iff (∅, ∅) →∗E (C,X). When clear from the context, we
will omit the index E from→E.

We remark that if E has no circular enablings, then LTSE can be characterised in a simpler form, i.e.
(C,X)

e−→ (C ∪ {e}, X) if C ` e, and (C,X)
e−→ (C ∪ {e}, X ∪ {e}) if C 6` e. The subrelation of −→E

containing only states with empty credits coincides with the transition relation defined in [21].
By Def. 5.5 it immediately follows that, for all CES E, the relation→E is deterministic, i.e. whenever

(C,X)
a−→ (C ′, X ′) and (C,X)

a−→ (C ′′, X ′′), it must be (C ′, X ′) = (C ′′, X ′′). Determinism is a very
desirable property, e.g. in the context of contracts, because it ensures that the events to be performed by
a participant at any given time are uniquely determined by the past actions.

Two immediate consequences of Def. 5.5 are reported in Lemma 5.6 below. In item (a) we start
from a state (C,X), from which we fire a sequence of events σ. Then, we reach a state (C ′, X ′) where
C ′ exactly comprises all the events in C ∪ σ, and the events which are removed from the credits are
circularly enabled by the events in C ∪σ. Item (b) states that the setX in a state (σ,X) is the least credit
for σ — and so X ⊆ σ for all reachable states (σ,X). Notice that there may exist different reachable
states (C,X) with same the same C and uncomparable X . This is because, in general, there exists no
least credit for a set of events C.

Lemma 5.6. For all C,C ′, X,X ′ ⊆ E, and for all σ ∈ E∗:

(a) (C,X)
σ−→ (C ′, X ′) =⇒ σ = C ′ \ C ∧ C ∪ σ X \X ′

(b) σ ∈ T(X) ∧ X least credit for σ ⇐⇒ (∅, ∅) σ−→ (σ,X)

Example 5.7. Recall the CES E2 from Fig. 1 (its enablings are a ` b and b a). According to its LTS
(depicted in Fig. 3, left), in the initial state we can fire either the event a or the event b, by taking it on
credit. In the state ({a}, {a}) we can perform the event b, and reach the state ({a, b}, ∅). Instead, when
performing a in the state ({b}, {b}) we reach the state ({a, b}, {b}). The event b cannot be discharged
from that credit set, since there does not exists any -enabling for it.

(∅, ∅)
({a}, {a})

({b}, {b})

b
({a, b}, ∅)

a
({a, b}, {b})

a

b (∅, ∅)
({a}, {a}) b

({a, b}, ∅)a

Figure 3. The LTS of CES E2 (left), and its urgent LTS (right).

The following theorem relates configurations with reachable states of the LTS. A (possibly infinite)
set C is an X-configuration iff for all finite subsets D of C there exists a state with events containing D
and with credits contained in X .

Theorem 5.8. For all CES E, and for all C,X ⊆ E:

C ∈ F(X) ⇐⇒ ∀D ⊆fin C, ∃X0 ⊆fin X. ∃C0. D ⊆ C0 ⊆ C. (∅, ∅)→∗ (C0, X0)

The LTS of a CES also gives an alternative way to characterise the reachable events.

Lemma 5.9. For all CES E, for all e ∈ E, and for all X ⊆ E:

e ∈ R(X) ⇐⇒ ∃C0 ⊆ E, X0 ⊆fin X. (∅, ∅)→∗ (C0, X0) ∧ e ∈ C0

Computations on LTSE are far too liberal: they allow us to fire an event either if it is (` or)-enabled
by the already fired events, or — by taking it on credit — if it will be honoured in the future, or even if it
will not. Except for the conflicting events, any event can be fired, with the risk of keeping such event in
the credit set forever. Intuitively, one would like to perform those events only which allow to eventually
reach a state with empty credits. Such events will be called urgent.

Definition 5.10. (Urgent events)
For all e ∈ E, and for all C,X ⊆ E, we say that e is urgent in (C,X) iff

∃σ. (C,X)
eσ−→E (C ∪ eσ, ∅)

We denote with UCE (X) the set of urgent events in (C,X).

Intuitively, the events that are urgent in (C,X) are those already enabled by C, or those which can
be done on credit, on behalf that they will be honoured when the right choices will be made in the future.
For instance, in E2 the event a is urgent in the initial state (∅, ∅). In such state b is not urgent, but it will
be urgent in the state ({a}, {a}) where a has been performed on credit.

Note that the definition of urgent events implicitly considers non-deterministic choices as angelic,
modelling a situation where a set of participants (the entities which fire events) cooperate to reach a
common goal. Indeed, an urgent event guarantees the existence of a trace leading to an empty credit set,
and such behavior intuitively is the one that will be followed in a cooperative setting. In other words,
angelic non-determinism guarantees that only the choices which lead to the goal are taken.

The case of demonic non-determinism, modelling a situation where participants compete to reach
their (possibly conflicting) goals, is quite more complex.

For instance, assume we extend E2 with the enabling a ` c and the conflict b#c. Then, Def. 5.10
states that a is urgent in the initial state. Indeed, assume that a is fired in the initial state; then, one has
the choice to perform either b or c. In a cooperative setting, only the branch b can be taken, because
it is the only way to reach an honoured trace. Instead, in a competitive setting (i.e. with demonic non-
determinism), the event a should not be considered urgent, because an adversary could choose the branch
c, and then prevent from reaching an honoured trace.

In the competitive setting, one could be tempted to define urgent events by just requiring that all the
choices lead to an honoured trace. However, this definition would be too strict, because it does not take
into account the fact that each participant can always control her own choices. A definition of urgent
events in competitive settings has been proposed in [5], by setting up a suitable game-theoretic model.

Example 5.11. Consider E2 and its LTS depicted in Fig. 3: a is urgent in (∅, ∅), because there exists a
path from ({a}, {a}) which leads to an empty credit set. For the same reason, b is urgent in ({a}, {a}).
On the contrary b is not urgent in (∅, ∅), because whatever choices are made in the future, it would not
be possible to honour the credit {b}. Indeed, if a transition labelled b is taken from state (∅, ∅) of LTSE2 ,
then all future states will contain the credit b.

Pruning away from an LTS all the transitions labelled by non-urgent events, we obtain a new LTS,
denoted by −⇀UE

. The crucial property of the −⇀UE
is that, by following its transitions, one is always

guaranteed to reach a state where all the credits have been honoured (see Lemma 5.14 below). For
instance, Fig. 3 (right) displays the urgent LTS for E2.

Definition 5.12. We define the relation −⇀UE
as the largest subset of −→E such that:

(C,X)
e−⇀UE

(C ′, X ′) iff (C,X)
e−→E (C ′, X ′) and e ∈ UC(X)

Note that in the absence of circularity the LTS−⇀UE
coincides with the LTS defined in [21], where the

componentX is always empty. For instance, let us consider an event structure without circular enablings,
and let (C,X) be a reachable state in its LTS. If X 6= ∅, then the credit X will never be honoured since
there are no circular enablings, hence no events will be urgent in (C,X). Otherwise, if X = ∅, then
the urgent events in (C, ∅) are exactly those events e such that C ` e. This is because, by Def. 5.5,
(C, ∅) e−→ (C ∪ {e}, ∅) if C ` e.

The following lemma relates the traces in TE with the traces in −⇀UE
. The traces in TE are exactly

those traces in −⇀UE
which lead to a state (C,X) with X = ∅.

Lemma 5.13. For all σ:
σ ∈ TE ⇐⇒ (∅, ∅) σ−⇀UE

(σ, ∅)

The following lemma establishes a crucial property of the LTS −⇀UE
, that is the ability to reach,

starting from any state (C,X) reachable from (∅, ∅) and following only −⇀UE
transitions, a state where

all the credits have been honoured.

Lemma 5.14. Let (C,X) be a reachable state of −⇀UE
. Then, ∃η. (C,X)

η−⇀UE
(C ∪ η, ∅)

The following lemma relates urgent events with reachability: reachable events in E are exactly those
events which label some transition in the LTS −⇀UE

.

a b

c d

(∅, ∅)
({a}, {a})

({b}, {b})

({a, b}, ∅)

({a, b}, {b})
({a, c}, {a})

({a, b, d}, ∅)

({a, b, c}, ∅)

a

b

b

c

a

d

c
b

c

Figure 4. An event structure E (left) and the LTS −⇀UE
(right).

Lemma 5.15. For all CES E, and for all C,X ⊆ E:

RE = {e | ∃σ : (∅, ∅) σ−⇀UE

e−⇀UE
}

A relevant question is whether, for any CES E, there exists a CES E′ without circular enablings such
that the LTS −⇀UE

equals to −→E′ . In other words, we wonder whether the expressiveness with the urgent
LTS is the same as that of the LTS of Winskel’s ES. A negative answer is displayed in Fig. 4, which
shows a CES E for which there exists no ES the LTS of which corresponds to −⇀UE

. Indeed, ES cannot
distinguish between two states which only differ for the credits, like e.g. ({a, b}, ∅) and ({a, b}, {b}) in
Fig. 4. In Winskel’s ES, a transition from a state C only depends on the events in C, and not on the order
in which these events have been fired. Instead, transitions in CES also depend on the credits accumulated
in the history of execution.

In the case of conflict-free CES, we provide in Def. 5.16 an alternative characterisation of urgent
events. Unlike UC(X), the set ÛC(X) also contains all the events in C. The relation between UC(X)
and ÛC(X) is formalised in Lemma 5.17 below.

Definition 5.16. For all C,X ⊆ E, we define the set ÛC(X) as follows:

e ∈ C
e ∈ ÛC(X)

(∈Û)
C ` e

e ∈ ÛC(X)
(`Û)

R(C ∪X) e

e ∈ ÛC(X)
(Û)

Lemma 5.17. For a a conflict-free CES E, and a reachable state (C,X) of −⇀UE
:

ÛCE (X) = UCE (X) ∪ C

Note that the definition of urgent events (Def. 5.10) is declarative. In concrete applications of CES,
when a participant has to decide which event to fire, it would be desirable to also have an algorithmic
description. In the case of finite CES, it is possible to find the set of urgent events by model checking the
LTS of the CES against the reachability property required by Def. 5.10. For finite conflict-free CES, an
algorithm for constructing the urgent events UC in a state (C,X) is obtained as follows. By Lemma 5.17,
UC(X) = ÛC(X)\C. The set ÛC(X) is constructed by direct application of the three rules in Def. 5.16,
where the set R(C ∪X) in the premise of rule (Û) is computed through the polynomial-time algorithm
provided by Theorem 4.8. For the more general setting of infinite CES, we come up against the problem
of undecidability, yet algorithmic results can be obtained by considering suitable subclasses of CES (e.g.
model checking temporal logic on finite representations of infinite ES, as in [15]).

6. Relations with logics

In this section we investigate some relations between CES and logics. In particular, we shall consider
Propositional Contract Logic (PCL, [7]), which allows for circular reasoning. We first shortly review
PCL, and then in sections 6.1 and 6.2 we shall discuss our main results.

PCL extends intuitionistic propositional logic (IPC) with a new binary connective, called contractual
implication and denoted by �. Differently from IPC, a formula p � q implies q not only when p
is provable, but also in the case that a “compatible” formula holds. This compatible formula can take
different forms, but the archetypal example is the (somewhat dual) q � p. While (p→ q) ∧ (q → p)→
p ∧ q is not a theorem of IPC, (p � q) ∧ (q � p) → p ∧ q is a theorem of PCL. PCL has been used as
a contract model in a calculus for contracting processes [7], and it has been related to a communication-
based contract model in [6]. We assume a denumerable set a, b, . . . of prime (atomic) formulae. PCL
formulae are denoted with the letters p, q, r, s,

Definition 6.1. The formulae of PCL are defined as:

p ::= ⊥ | > | a | ¬p | p ∨ p | p ∧ p | p→ p | p� p

A proof system for PCL is provided in [7], both in terms of an Hilbert-style and a Gentzen-style
axiomatisation (which are shown in [7] to be equivalent). Here we only consider the Gentzen-style proof
system, which extends the rules for IPC presented in [16] with the following three rules (the full rule set
is reported in Appendix C):

Γ, p� q, r ` p

Γ, p� q, q ` r

Γ, p� q ` r
(FIX)

Γ ` q

Γ ` p� q
(ZERO)

Γ, p� q, a ` p

Γ, p� q, q ` b

Γ, p� q ` a� b
(PREPOST)

Rule FIX is the left rule for �. It is almost the same as the left rule for→, except that (in a “circular”
fashion) the formula r can be used to deduce p in the first rule premise. Rule ZERO introduces � on the
right of a sequent (similarly e.g. to #R of lax logic [10]), while rule PREPOST introduces � on the right,
and eliminates it on the left (similarly e.g. to #L of [10]).

The main result of [7] is the decidability of the entailment relation `, which is a direct consequence
of the cut elimination and subformula properties enjoyed by the proof system.

A first correspondence between CES and PCL can be observed by comparing the three items of
Lemma 3.9 with the rules CUT,→L and FIX of PCL, respectively:

C ∈ F(X) C ′ ∈ F(X ∪ C)

C ∪ C ′ ∈ F(X)
(3.9(a))

Γ ` p Γ, p ` q

Γ ` q
(CUT)

C ∈ F(X) C ′ ∈ F(X ∪ Y) C ` Y
C ∪ C ′ ∈ F(X)

(3.9(b))
Γ ` p Γ, q ` r p→ q ∈ Γ

Γ ` r
(→L)

C ∈ F(X ∪ C ′) C ′ ∈ F(X ∪ Y) C Y

C ∪ C ′ ∈ F(X)
(3.9(c))

Γ, r ` p Γ, q ` r p� q ∈ Γ

Γ ` r
(FIX)

Notice that, under the hypotheses of Lemma 3.9, the stronger thesis C ′ ∈ F(X) does not hold in general.
For instance, consider the CES with enablings a b, b a, a ` c. We have that C = {a, b} ∈ F

and C ′ = {a, c} ∈ F(C). By Lemma 3.9(a), it then follows that C ∪ C ′ ∈ F, but C ′ alone is not a
configuration. Similar examples hold for items (b) and (c).

6.1. Reachability via logic

In Def. 6.2 we show a translation from CES into PCL formulae. In particular, our mapping is a bijection
of finite, conflict-free CES into the Horn fragment of PCL, which comprises atoms, conjunctions and
non-nested (standard/contractual) implications. To disambiguate the enabling ` of CES from the entail-
ment relation of PCL, below we shall denote the latter with `PCL. Also, when writing X ` e we shall
mean that X is a minimal set of events such that (X, e) ∈ ` (similarly for).

The encoding [·]R maps an enabling ` into an→-clause, and a circular enabling into an �-clause.

Definition 6.2. Let E = 〈E,#,`,〉 be a conflict-free CES. The mapping [·]R from E into sets of PCL
formulae is defined as follows:

[(Xi ◦ ei)i∈I]R = {[Xi ◦ ei]R | i ∈ I}

[X ◦ e]R =
(∧

X
)

[◦] e
where [◦] =

{
→ if ◦ = `
� if ◦ =

Notice that the encoding above can be inverted, i.e. one can also translate a Horn PCL theory into a
conflict-free CES. Indeed, the encoding can be seen as an isomorphism.

For each event e ∈ E, we assume an atom e in PCL. For a conjunction of atoms ϕ =
∧
i∈I ei, we

write ϕ for the set {ei | i ∈ I}. We extend this notation to sets Φ of conjunctions of atoms: we write Φ
for
⋃
{ϕ | ϕ ∈ Φ}, and Φ,Φ′ for Φ ∪ Φ′.

Lemma 6.3. Let E be a finite, conflict-free CES. For all ϕ and Φ, ϕ ⊆ RE(Φ) iff [E]R ,Φ `PCL ϕ.

A direct consequence of the above lemma (by choosing ϕ = e and Φ = ∅) is the correctness and
completeness of the encoding.

Theorem 6.4. Let E be a finite, conflict-free CES. For all e ∈ E, we have e ∈ RE iff [E]R `PCL e.

Theorem 6.4 has two important consequences. First, together with Theorem 4.8, it provides us with
a polynomial-time algorithm for checking provability in Horn PCL theories (in contrast with the fact
that provability in full PCL is PSPACE-hard, as well as in IPC and in its implicational fragment [19]).
Second, we can exploit properties of PCL to derive properties of conflict-free CES. For instance, from
the tautology (a→ b)∧(b� c)→ (a� c) of PCL we deduce that any conflict-free CES with enablings
a ` b and b c can be enriched with the enabling a c, without affecting the reachable events.

6.2. Configurations via logic

We now show that the problem of deciding if a set of events is a configuration in a CES can be reduced
to provability in the logic PCL (which is shown in [7] to be decidable).

Note that, even in the case where E is conflict-free, one cannot simply exploit the encoding [E]R in
Def. 6.2 to test whether a set of events C is a configuration or not. A wrong attempt would be to check

the entailment [E]R `PCL C. This would be incorrect, because, in general, not every set of reachable
events is a configuration. For instance, in the CES E2 in Ex. 2.5(2) the set {a, b} is a configuration, but
{a} and {b} are not.

To test if a set C is a configuration, besides requiring that C only contains reachable events, we also
have to ensure that any event in C can be justified by using only other events in C. To do that, we first
tag with ! the events in C, and then we encode each enabling similary to Def. 6.2, but guaranteeing that
an event can be proved only if all its justifications belong to C. For instance, a b is encoded as the
clause (!a ∧ !b ∧ a) � b, from which we can deduce b only if both a and b belong to the set C.

Technically, for a CES E = 〈E,#,`,〉 and a set X ⊆ E, we denote with !X the set {!e | e ∈ X}.
We assume !E disjoint from E, i.e. !E ∩ E = ∅. For a set X ⊆ E ∪ !E, we define X [= X ∩ E, and
X ! = {e ∈ E | !e ∈ X}. According to this notation, for all sets of atoms X,Y ⊆ E ∪ !E, we have (i)
X = X [∪ !(X !), and (ii) if X ⊆ Y , then X [⊆ Y [and X ! ⊆ Y !.

Definition 6.5. Let E = 〈E,#,`,〉 be a CES. The mapping [·]F from E into sets of PCL formulae is
defined as follows:

[(Xi ◦ ei)i∈I]F = {[Xi ◦ ei]F | i ∈ I}

[X ◦ e]F =
(
!e ∧ X ∧ !X

)
[◦] e where [◦] =

{
→ if ◦ = `
� if ◦ =

[a # b]F = (!a ∧ !b)→ ⊥

Intuitively, we want to test if a set of events C is an X-configuration. To do that, we first tag with
a ! all the events in C, and then assume Γ = [E]F , !C, X . The encoding [·]F maps a conflict a#b to a
formula (!a ∧ !b)→ ⊥. Therefore, if C is not conflict-free then its encoding will deduce ⊥. Otherwise,
we check ifC is entailed by Γ. The encoding of E will be a set of clauses of the form

(
!e ∧X ∧ !X

)
[◦] e.

The !e on the left of the clause ensures that e can be proved only if it belongs to C. Similarly, the !X
ensures that the justifications of e belong to C as well.

Lemma 6.6 establishes two basic properties of the encoding. Item (a) states that if a !-atom is prov-
able, then it must already be present in Φ (i.e. it cannot be generated by the encoding). Item (b) states that,
under the hypothesis Φ

[⊆ Φ
!, if an atom e without ! is provable, then !e must belong to Φ. Intuitively,

this is caused by the fact that the encoding requires !e on the left of all clauses which produce e.

Lemma 6.6. For all sets of conjunctions of atoms Φ, and for all conjunctions of atoms ϕ such that
[E]F , Φ `PCL ϕ and [E]F , Φ 6`PCL ⊥, we have (a) ϕ ! ⊆ Φ

!, and (b) Φ
[⊆ Φ

!
=⇒ ϕ [⊆ Φ

!

The following theorem gives a criterion to decide if C is an X-configuration.

Theorem 6.7. Let E be a finite CES. For all C ⊆ E and for all X ⊆ E:

C ∈ FE(X) ⇐⇒ [E]F , !C, X `PCL C and [E]F , !C, X 6`PCL ⊥

Example 6.8. Recall the CES E3 from Fig. 1. We have that:

[E3] = { (!c ∧ !a ∧ !b ∧ a ∧ b)→ c, (!a ∧ !c ∧ c) � a, (!b ∧ !c ∧ c) � b }

Let C = {a, b, c}. We have that C ∈ FE3 , and [E3], !C `PCL C. Note that, were the !-ed atoms omitted
in the premises of→ /�, then we would have, e.g., [E3], !a, !c `PCL a∧c, from which by Theorem 6.7
we would have incorrectly deduced that {a, c} ∈ FE3 .

7. Related work and conclusions

We have extended Winskel’s event structures with a new enabling relation, which allows for reasoning
about circular dependencies among events which are part of the same configuration. To the best of our
knowledge, beside some approaches we will discuss below, the other event-based models appeared in
the literature do not consider circular dependencies in the same way as we do. Circularity may exist in
the relations among events (as in Boudol’s flow event structures [8]) but these relations, when restricted
to the events in a configuration, give a partial order, whereas in our case this is not true.

Observe that our notion of configuration (Def. 2.4) assumes the axiom of finite causes, i.e. it requires
that every event in a configuration has a finite justification, both in the past (through both kinds of en-
ablings), and in the future (through -enablings). An interesting variant of our theory can be obtained
by dropping the axiom of finite causes on the events taken on credit. Consider e.g. the CES:

e0 � e1 � e2 � e3 � e4 � · · ·

it might be arguable whether the set C = {ei | i ≥ 0} has to be considered a configuration or not. For in-
stance, if the CES models an ever-growing debit (similarly to the money-lender scenario of Example 2.7)
the borrower would reasonably not consider C as a successful execution of the system. Indeed, Def. 2.4
rules out C as a configuration, because, for all i, there exists no finite trace containing ei (hence the only
configuration there is the empty one).

In some scenarios, the ability of honouring a debt “at the limit” could be acceptable. To drop the
axiom of finite causes on the events taken on credit, we should also allow for infinite traces, e.g. 〈e0 e1 . . .〉
in the example above. This modification would make the setC above a configuration, at the cost of losing
the finiteness property (Def. 3.11), and all the properties deriving from it (e.g. Lemma 3.3). Furthermore,
because of the presence of infinite chains of -enablings, the rules defining reachable events for conflict-
free CES (Def. 4.5) must be interpreted coinductively, by allowing for infinite derivations. Note that not
all infinite derivations are acceptable, e.g. an infinite path of rules `

R̂
would violate the axiom of finite

causes for `-enablings. We conjecture that reachable events are those for which there exists a derivation
where each infinite path contains an infinite number of occurrences of rule

R̂
.

Circular reasoning often appears in the compositional modelling and verification of systems. Circu-
larity issues have been investigated in assume-guarantee reasoning [1, 2, 13, 20], in models of workflow
systems [11], in logic programming [18, 17]. Circularity is also a common situation when reasoning
about contracts [7, 5, 4]: circular dependencies arise when two or more tasks mutually rely on the guar-
antees provided by each other. We briefly discuss some of these approaches below.

In [11] a generalization of prime event structures is proposed where a response relation (denoted
with •→) is used to characterise the accepting traces as those where, for each a •→ b, if a is present in
the trace, then b eventually occurs after a. The response relation bears some resemblance with our
relation, but there are some notable differences. First, having a b does not necessarily imply that a
configuration containing a must also contain b (another enabling could have been used), whereas a •→ b
stipulates that once one has a in a configuration, then also b must be present. Indeed, an enabling a b

can be neglected, whereas a •→ b must be used. Also, augmenting the number of -enablings increases
the number of configurations, while adding more response relations reduces it.

Circularity is dealt with at a logical (proof-theoretic) level in [7]. The Horn fragment of PCL is
strongly related to finite CES: in particular, provability of atoms corresponds to reachability of events in
conflict-free CES (Theorem 6.4); configurations can be reduced as well to provability and consistency
checking of PCL formulae (Theorem 6.7).

The motivations underlying the circular enabling of CES seem related to those introduced in [2] to
compose assume-guarantee specifications [1]. There, the idea is that a system will give some guarantee
M1 about its behaviour, provided that the environment it operates within will behave according to some
assumption M2, and vice versa. In the model of [2], this is rendered as the judgment (M1 → M2) ∧
(M2 → M1) ` M1 ∧M2. However, since→ is the usual intuitionistic implication, the validity of this
judgment (not valid in IPC) is subject to a side condition on the interpretation ofM1,M2 in the model. In
our approach we obtain a similar goal through the circular enabling: the CES with enablings m1 m2

and m2 m1 has {m1,m2} as a configuration.
The issue of circular dependencies among events has been addressed also in the Petri nets’ world.

In [4] a notion of lending Petri nets (LPNs) has been introduced. In LPNs places are partitioned into two
sets: lending places and normal ones. A transition may be executed even if some of the lending places in
the preset are not marked, thus borrowing tokens from such places. A successful computation in an LPN
is a computation where all the borrowed tokens are given back. LPNs with some additional constraints,
contract nets, have been then developed as a concrete counterpart of logical contracts specified as Horn
PCL formulae. A correspondence between CES and contract nets can be established. Successful com-
putations in a contract net correspond to configurations in the associated CES and vice versa. Indeed,
borrowing tokens in contract nets is similar to firing events on credit. However in a CES events may be
taken on credit without any restriction, whereas this is not possible in contract net, hence computations
in contract nets are somehow less liberal than in CES. We also conjecture that urgent actions in LPNs,
i.e. those actions which preserve the ability to reach an honoured marking, correspond to urgent events
in the associated CES.

In coinductive logic programming (CLP, [17]), both coinduction and induction can be used to give
semantics to programs, i.e. to sets of Horn clauses. Intuitively, this can be related to CES in that ` has
an inductive flavour, while a coinductive one. However, two main differences exist between the two
frameworks. First, in CLP all the clauses for the same predicate have to share their inductive/coinductive
nature. That is, there is no equivalent for a1 ` b, a2 b because b is used in both fashions. Second,
CLP forbids circular dependencies between inductive and coinductive predicates, requiring stratification.
For instance, CLP allows for expressing a b, b a, as well as a ` b, b c, while it forbids
a ` b, b a because b would be inductive while a would be coinductive. Other approaches mixing
induction and coinduction (e.g. [12]) work under a similar stratification assumption. We believe that by
assuming stratification one can find good connections between CES and CLP. However, we think that
(unconstrained) circularity is an essential feature of concurrent systems, and in particular of contracts.
For instance, the system a ` b, b a is an archetypal scenario in contracting systems, where we are both
expressing circularity between a and b, and a legitimate ordering between the events, i.e. a must occur
before b. In CES, we can encompass both aspects: in the above example, {a, b} is a configuration, and
the LTS of urgent events describes the traces which respect the causal ordering imposed by `-enablings
(while does not prescribe any order). Therefore, requiring stratification in CES would seem to trivialize
them. Note in passing that PCL requires no stratification, hence it can be meaningfully related to CES.

References
[1] Abadi, M., Lamport, L.: Composing Specifications, ACM Transactions on Programming Languages and

Systems, 15(1), 1993.

[2] Abadi, M., Plotkin, G. D.: A Logical View of Composition, Theoretical Computer Science, 114(1), 1993.

[3] Baldan, P., Corradini, A., Montanari, U.: Contextual Petri Nets, Asymmetric Event Structures, and Processes,
Inf. Comput., 171(1), 2001, 1–49.

[4] Bartoletti, M., Cimoli, T., Pinna, G. M.: Lending Petri nets and contracts, Proc. FSEN, 2013, To appear.

[5] Bartoletti, M., Cimoli, T., Zunino, R.: A theory of agreements and protection, Proc. POST, 2013, To appear.

[6] Bartoletti, M., Tuosto, E., Zunino, R.: Contract-oriented Computing in CO2 , Scientific Annals in Computer
Science, 22(1), 2012, 5–60.

[7] Bartoletti, M., Zunino, R.: A Calculus of Contracting Processes, LICS, 2010.

[8] Boudol, G.: Flow Event Structures and Flow Nets, Semantics of Systems of Concurrent Processes, 469,
Springer, 1990.

[9] Cimoli, T.: A theory of agreements and protection, Ph.D. Thesis, Dipartimento di Matematica e Informatica,
University of Cagliari, 2013.

[10] Fairtlough, M., Mendler, M.: Propositional Lax Logic, Information and Computation, 137(1), 1997.

[11] Hildebrandt, T. T., Mukkamala, R. R.: Declarative Event-Based Workflow as Distributed Dynamic Condition
Response Graphs, Proc. PLACES, 69, 2010.

[12] Leroy, X., Grall, H.: Coinductive big-step operational semantics, Inf. Comput., 207(2), 2009, 284–304.

[13] Maier, P.: Compositional Circular Assume-Guarantee Rules Cannot Be Sound and Complete, Proc. FoS-
SaCS, 2003.

[14] Nielsen, M., Plotkin, G. D., Winskel, G.: Petri Nets, Event Structures and Domains, Part I, Theor. Comput.
Sci., 13, 1981, 85–108.

[15] Penczek, W.: Model-Checking for a Subclass of Event Structures, Proc. TACAS, 1217, Springer, 1997.

[16] Pfenning, F.: Structural Cut Elimination - I. Intuitionistic and Classical Logic, Information and Computation,
157(1/2), 2000, 84–141.

[17] Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-Logic Programming: Extending Logic Programming with
Coinduction, Proc. ICALP, 2007.

[18] Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive Logic Programming, in: Logic Programming,
Springer, 2006, 330–345.

[19] Statman, R.: Intuitionistic propositional logic is polynomial-space complete, Theoretical Computer Science,
9, 1979, 67–72.

[20] Viswanathan, M., Viswanathan, R.: Foundations for Circular Compositional Reasoning, ICALP, 2001.

[21] Winskel, G.: Event Structures, Advances in Petri Nets, 1986.

[22] Winskel, G.: An Introduction to Event Structures, REX Workshop, 1988.

A. Proofs for Section 4

Definition A.1. Let the predicate DF (σ) be true iff σ has no duplicates, i.e. DF (σ) ≡ ∀i ≤ n : ei 6∈ σi.

Proof of Lemma 4.3:
For (a), let e ∈ X . Since CF ({e}), by Lemma 3.7(3.7) it follows that {e} ∈ F({e}). By Lemma 3.7(3.7),
we also have {e} ∈ F(X). Thus, by Def. 4.1 it follows that e ∈ R(X).

For (b), let e in R(X). By Def. 4.1, there exists C ∈ F(X) such that e ∈ C. Since X ⊆ Y , by
Lemma 3.7(3.7) we also have C ∈ F(Y). Hence, e ∈ R(Y).

For (c), the inclusion ⊆ follows directly by item (b). For the inclusion ⊇, let e ∈ R(C ∪X), and let
C = {ei}i ⊆ R(X). By Def. 4.1, there exists C ′ ∈ F(C ∪X) such that e ∈ C ′, and for all events
ei ∈ C, there exists Ci ∈ F(X) such that ei ∈ Ci. Let A = {Ci | ei ∈ C}, and let Cj , Ck ∈ A.
By Def. 4.1, Cj , Ck ⊆ R(X). Since CF (R(X)) follows by hypothesis, then CF (Cj ∪ Ck), and so by
Theorem 3.12, Cj ∪ Ck ∈ F(X). Thus, by Def. 3.10, the family of X-configurations A is pairwise
compatible. By Theorem 3.12, F =

⋃
A ∈ F(X). Since F ⊆ R(X) and C ′ ⊆ R(C ∪X), then

F ∪ C ′ ⊆ R(C ∪X), and thus CF (F ∪ C ′) follows by the premise of (c). By Lemma 3.7(3.7), since
C ′ ∈ F(C ∪X) and C ⊆ F , then C ′ ∈ F(F ∪X). Therefore, by Lemma 3.9(a), e ∈ F ∪ C ′ ∈ F(X),
and so e ∈ R(X). ut

In Lemma A.2 we summarise some basic properties of the operator R̂: similarly to R, it is monotonic;
and we have that R̂(X) is a fix point of R̂. Finally in Lemma 4.7 we prove that R and R̂ are equal.

Lemma A.2. For all X,Y ⊆ E:

(a) X ⊆ R̂(X)

(b) X ⊆ Y =⇒ R̂(X) ⊆ R̂(Y).

(c) R̂(R̂(X)) = R̂(X)

Proof:
Item (a) is straightforward by rule (∈R̂). Item (b) is by easy induction on the depth of the derivation of
e ∈ R̂(X). For item (c), the inclusion R̂(X) ⊆ R̂(R̂(X)) follows by item (a). The other inclusion can
be easily proved by induction on the depth of the proof of e ∈ R̂(R̂(X)). ut

Lemma A.3. For all X,Y ⊆ E, Y ⊆ R̂(X) =⇒ R̂(X ∪ Y) = R̂(X).

Proof:
The inclusion R̂(X ∪ Y) ⊇ R̂(X) follows directly by Lemma A.2(b). For the other inclusion, by
Lemma A.2(b) and A.2(c) we have:

Y ⊆ R̂(X) =⇒ R̂(Y) ⊆ R̂(R̂(X)) = R̂(X)

By Lemma A.2(a), Y ⊆ R̂(Y). Since R̂(Y) ⊆ R̂(X), then by Lemma A.2(b) we have R̂(X ∪ Y) ⊆
R̂(X ∪ R̂(X)). By Lemma A.2(a),X ⊆ R̂(X), and so R̂(X ∪ R̂(X)) = R̂(R̂(X)). By Lemma A.2(c),
we have R̂(R̂(X)) = R̂(X), which concludes. ut

Lemma A.4. For all X ⊆ E, Y ⊆fin E, R̂(X ∪ Y) Y =⇒ Y ⊆ R̂(X).

Proof:
If Y = ∅, the statement holds trivially. Otherwise, let Y = {e0, . . . , ek}. For all i ≤ k, we define
Yi = {e0, . . . , ei}, and Y i = Y \ Yi = {ei+1, . . . , ek}. We shall prove that:

∀i ≤ k. Yi ⊆ R̂(X ∪ Y i) (3)

To prove (3), we proceed by mathematical induction.

• Base case i = 0.

By hypothesis, R̂(X ∪ Y) e0. Then:

R̂(X ∪ Y) e0

e0 ∈ R̂((X ∪ Y) \ {e0})
(R̂)

So we have proved that {e0} = Y0 ⊆ R̂((X ∪ Y) \ {e0}) ⊆ R̂(X ∪ Y 0).

• Inductive case. By the induction hypothesis, we have that Yi ⊆ R̂(X ∪ Y i). By Lemma A.3,
R̂(X ∪ Y i ∪ Yi) = R̂(X ∪ Y i). By (∈R), we have ei+1 ∈ R̂(X ∪ Y) = R̂(X ∪ Y i ∪ Yi) =
R̂(X ∪ Y i). By hypothesis, R̂(X ∪ Y i ∪ Yi) ei+1, and so R̂(X ∪ Y i) ei+1. Hence we can
apply rule (

R̂
) to obtain:

R̂(X ∪ Y i) ei+1

ei+1 ∈ R̂(X ∪ Y i+1)
(

R̂
) (4)

We obtain the thesis of (3) as follows:

Yi+1 = Yi ∪ {ei+1} (by Def. Yi)

⊆ R̂(X ∪ Y i) ∪ {ei+1} (by the induction hypothesis)

= R̂(X ∪ Y i) (by ei+1 ∈ R̂(X ∪ Y i))

= R̂(X ∪ Y i+1 ∪ {ei+1}) (by Def. Y i)

= R̂(X ∪ Y i+1) (by Lemma A.3 and (4))

Back to the main statement, just note that for i = k in (3), we obtain the thesis Y = Yk ⊆ R̂(X). ut

In Def. A.5 below we define how the credit set of a trace changes when removing the last event
(see [9] for a more detailed account of this topic). When the set X in Def. A.5 is the least credit of σ,
then Lemma A.6 will guarantee that ∆−(σ,X, e) is the least credit of σe. Differently from Def. 5.1, we
need a trace instead of a configuration, since we need to know the order in which events have been done.

Definition A.5. For all X ⊆ E, for all σ = 〈e0 . . . en〉, and for all e ∈ E, we define:

∆−(σ,X, e) = (X \ {e}) ∪ {ei ∈ σ | σe ei ∧ σ 6 ei ∧ σi 6` ei} (5)

Lemma A.6. Let σ = σ′e = 〈e0 . . . en〉, with en = e. Then,

σ ∈ T(X) =⇒ σ′ ∈ T(∆−(σ′, X, e))

Moreover, if X is the least credit for σ′, then ∆−(σ′, X, e) is least credit for σ.

Proof:
Let σ = σ′e = 〈e0 . . . en〉 ∈ T(X), with en = e. Since σ ∈ T(X), by eq. (1) we have that:

CF (σ) ∧ DF (σ) ∧ ∀i ≤ n. (ei ∈ X ∨ σi ` ei ∨ σ ei)

Since σ′ is a prefix of σ then CF (σ′) and DF (σ′). Moreover, e only occurs in the last position, hence:

∀i ≤ n− 1. (ei ∈ (X \ {e}) ∨ σ′i ` ei ∨ σ ei) ∧ (e ∈ X ∨ σ′ ` e ∨ σ e) (6)

Let us define the set D as:

D = {ei ∈ σ′ | σ ei ∧ σ′ 6 ei ∧ σ′i 6` ei} (7)

We will prove that σ′ ∈ T(R), with R = (X \ {e}) ∪D. Let i ≤ n− 1. By (6), we have three cases:

• ei ∈ X . Since ei 6= e for all i < n, then ei ∈ X \ {e} ⊆ R.

• σi ` ei. Since σ′ is a prefix of σ, for all i < n it holds that σ′i ` ei.

• σi 6` ei and σ ei. If σ′ ei, then ei is justified in σ′. Otherwise, we have ei ∈ D ⊆ R.

We have then proved that σ′ ∈ T(R).

We now prove that R is a minimal credit for σ′. By contradiction, assume that there exists some Y ⊂ R
such that σ′ ∈ T(Y). Pick an ei ∈ σ′ such that ei ∈ R \ Y . By hypothesis, σ′ ∈ T(Y), so it must be:

σ′i ` ei ∨ σ′ ei

We have two cases:

• σ′i ` ei. Since ei ∈ R \ Y , we have two cases: ei ∈ X \ {e} or ei ∈ D. Note that by (7), it
cannot be ei ∈ D. If ei ∈ X \ {e}, then we would have σ ∈ T(X \ {ei}), which contradicts the
hypothesis that X is a minimal credit for σ.

• σ′ ei. As above we have two cases: ei ∈ X \ {e} or ei ∈ D. Note that by (7), it cannot be
ei ∈ D. If ei ∈ X \ {e}, then we would have σ ∈ T(X \ {ei}), which contradicts the hypothesis
that X is a minimal credit for σ.

In both cases we have a contradiction; thus R is a minimal credit for σ, and by Lemma 3.5, A is a least
credit. ut

Lemma A.7. For all C,X ⊆ E, C ∈ F(X) =⇒ C ⊆ R̂(X).

Proof:
We will first prove that ∀C0 ⊆fin C. ∀X. C0 ∈ F(X) =⇒ C0 ⊆ R̂(X). Let C0 ⊆fin C, and assume
that C0 ∈ F(X), for some X . By Corollary 3.4 we have that:

∃σ = 〈e0 . . . en〉 ∈ T(X). σ = C0

We proceed by induction on the size of C0. In the base case C0 = ∅ the thesis holds trivially. For the
inductive case, let us assume C0 6= ∅. Let en = e, let σ′ = 〈e0 . . . en−1〉 and let C ′ = σ′. We will prove
that C ′ ⊆ R̂(X) and e ⊆ R̂(X). Let:

D = {ei ∈ σ′ | σ ei ∧ σ′ 6 ei ∧ σ′i 6` ei} (8)

By Lemma A.6, σ′ ∈ T(X ∪D). By Lemma 3.4,C ′ ∈ F(X ∪D), and then by the induction hypothesis,
C ′ ⊆ R̂(X ∪D). Now, we will prove that e ∈ R̂(X ∪D). Since e = en ∈ σ, by eq. (1), to justify e in
σ we must have:

e ∈ X ∨ σ′ ` e ∨ σ e

We have the following three cases:

• if e ∈ X , by (∈R̂) we have that e ∈ R̂(X) and by Lemma 3.7(3.7), e ∈ R̂(X ∪D).

• if σ′ ` e, since by the induction hypothesis C ′ ⊆ R̂(X ∪D) and C ′ ` e, then by saturation
R̂(X ∪D) ` e. Therefore by (`R̂) we have:

R̂(X ∪D) ` e
e ∈ R̂(X ∪D)

(`R̂)

• if σ e, since by the induction hypothesis C ′ ⊆ R̂(X ∪D), then by Lemma 3.7(3.7), C0 =
C ′ ∪ {e} ⊆ R̂(X ∪D ∪ {e}). By saturation, σ = C0 e implies R̂(X ∪D ∪ {e}) e.
Therefore, by (R̂) we have:

R̂(X ∪D ∪ {e}) e

e ∈ R̂(X ∪D)
(R̂)

So we have proved that e ∈ R̂(X ∪D), hence C0 = C ′ ∪ {e} ⊆ R̂(X ∪D). Note that by (8), we
have that C0 D, and so by saturation R̂(X ∪D) D. Therefore by Lemma A.4, D ⊆ R̂(X). By
Lemma A.3, it follows that R̂(X ∪D) = R̂(X), and the thesis follows because C0 ⊆ R̂(X ∪D).

Back to the main statement, since C ∈ F(X) we have that for all e ∈ C, there exists σe ∈ T(X)
such that e ∈ σe ⊆fin C. Since σe ∈ F(X), we have proved above that σe ⊆ R̂(X). Therefore,
C =

⋃
{σe | e ∈ C} ⊆ R̂(X). ut

Proof of Theorem 4.7:
(⊆) Let e ∈ R(X). By Def. 4.1, there exists a configurationC ∈ F(X) such that e ∈ C. By Lemma A.7,
e ∈ C ⊆ R̂(X).

(⊇) Assume that e ∈ R̂(X). We will prove that ∃C ∈ F(X) such that e ∈ C. By Def. 4.1, this
will allow to conclude e ∈ R(X). We proceed by induction on the depth of the derivation of e ∈ R̂(X).
According to the last rule used in the derivation, we have the following three cases:

• case (∈R̂). We have that
e ∈ X

e ∈ R̂(X)
(∈R̂)

Since e ∈ X , by Lemma 3.7 we have that e ∈ {e} ∈ F(X).

• case (`R̂).
R̂(X) ` e
e ∈ R̂(X)

(`R̂)

The premise R̂(X) ` e implies that there exists D ⊆fin R̂(X) such that D ` e. By the induction
hypothesis, for all d ∈ D there exists Cd ∈ F(X) such that d ∈ Cd. Let C =

⋃
d∈D Cd. Since

E is conflict-free, by Theorem 3.12 it follows that C ∈ F(X). Since D ⊆ C and D ` e, by
saturation we have C ` e. By Lemma 3.7(3.7), {e} ∈ F({e}). Therefore, by Lemma 3.9(b),
C ∪ {e} ∈ F(X).

• case [
R̂

]

R̂(X ∪ {e}) e

e ∈ R̂(X)
[

R̂
]

The premise R̂(X ∪ {e}) e implies that there exists D ⊆fin R̂(X ∪ {e}) such that D e. By
the induction hypothesis, for all d ∈ D there exists Cd ∈ F(X ∪ {e}) such that d ∈ Cd. Let
C =

⋃
d∈D Cd. Since E is conflict-free, by Theorem 3.12 it follows that C ∈ F(X ∪ {e}). By

Lemma 3.7(3.7), {e} ∈ F(X ∪ {e}). Since D ⊆ C and D e, by saturation we have C e.
Therefore, Lemma 3.9(c) gives that C ∪ {e} ∈ F(X).

ut

Proof of Theorem 4.8:
The function GX is monotonic. Since the domain is finite, it is also continuous, hence by Kleene’s fixed
point theorem, lfpGX =

⋃
i∈ω G

i
X(∅). Similarly, F is monotonic, and so it is continuous and also

co-continuous.
We first show that R ⊆ gfpF . By Tarski’s fixed point theorem, gfpF is the least upper bound of the

post-fixed points of F , i.e. of the sets X for which X ⊆ F (X). Therefore, to obtain the thesis it suffices
to prove that R ⊆ F (R). By Def. 4.1, we have that R =

⋃
{σ | σ ∈ T}. It then suffices to show that

σ ⊆ F (R), for all σ ∈ T. We proceed by induction on the length of the sequence σ:

• base case: σ = 〈〉. The thesis follows trivially.

• inductive case: σ = η e. By the induction hypothesis, η ⊆ F (R). We have two further subcases,
according on how e has been justified in the trace.

– If η ` e, then since η ⊆ F (R), by saturation of ` it follows that F (R) ` e. By definition of
G, it follows that e ∈ GX(F (R)), for all X . In particular, e ∈ G{e′|Re′}(F (R)), which is
equal to F (R) by definition of F .

– If σ e, then since σ ⊆ R, by saturation of it follows that R e. Thus, we conclude that
e ∈ {e′ | R e′} ⊆ lfpG{e′|Re′} = F (R).

We now show that gfpF ⊆ R. To do that, consider an arbitrary fixed point Y of F , i.e. assume that
Y = F (Y). We will prove that Y ⊆ R, which gives the thesis. LetK = {e | Y e}. Since Y = F (Y),
then by Kleene’s fixed point theorem we have Y = lfpGK =

⋃
i∈ω G

i
K(∅). We will now construct a

sequence σ ∈ T such that σ = Y . Since E is finite, the chain:

∅ = G0
K(∅) ⊆ G1

K(∅) ⊆ G2
K(∅) ⊆ · · · ⊆ GiK(∅) ⊆ · · ·

stabilizes to lfpGK after a finite number (say, n) of steps. We then construct a sequence σ = σ1σ2 · · ·σn
as follows. Each σi is an arbitrary ordering of the events in the sets Yi, defined as:

Yi = GiK(∅) \ (
⋃
j<i Yj)

We have that:

G1
K(∅) = K ∪ {e | ∅ ` e} Y1 = K ∪ {e | ∅ ` e}

G2
K(∅) = K ∪ {e | Y1 ` e} Y2 = {e | Y1 ` e} \ Y1

G3
K(∅) = K ∪ {e | Y1 ∪ Y2 ` e} Y3 = {e | Y1 ∪ Y2 ` e} \ (Y1 ∪ Y2)
· · · · · ·

GiK(∅) = K ∪ {e |
⋃
j<i Yj ` e} Yi = {e |

⋃
j<i Yj ` e} \ (

⋃
j<i Yj)

Therefore, for all i > 0, (
⋃
j<i Yj) ` Yi \K.

We show that σ is a trace of E. For each event e occurring in σ, there exists i ≤ n such that e ∈ σi.
One of the following two cases applies:

• i = 1. Then, either e ∈ K, or ∅ ` e. In the first case, e has a justification in σ because Y e (by
definition of K) and Y = σ. In the second case, e is trivially justified.

• i > 1. Since (
⋃
j<i Yj) ` Yi, then e is justified by the events in σ1 · · ·σi−1.

Therefore, σ ∈ T, and so by Def. 4.1, σ ⊆ R. By construction we have σ = Y , hence Y ⊆ R. Since Y
is an arbitrary fixed point of F , then a fortiori we conclude that gfpF ⊆ R. ut

B. Proofs for Section 5

Proof of Lemma 5.3:
Let σ′ = 〈e0 . . . en〉 ∈ T(X ′), let σ = σ′e, and let X = ∆(σ′, X ′, e). By equation (1) it is easy to see
that σ ∈ T(X). Let X ′ be the least credit for σ′. We prove that X is the least credit for σ. By Def. 5.3:

X = ∆(σ′, X ′, e) = (X ′ \ {x ∈ X ′ | σ′ ∪ {e} x}) ∪

{
{e} if σ′ ∪ {e} 6 e ∧ σ′ 6` e
∅ otherwise

By Lemma 3.5, X ′ = {ei ∈ σ′ | σ′i 6` ei ∧ σ′ 6 ei}. Since σ′ ∪ {e} = σ, we have:

X = ({ei ∈ σ′ | σ′i 6` ei ∧ σ′ 6 ei} \ {x ∈ X ′ | σ x}) ∪

{
{e} if σ 6 e ∧ σ′ 6` e
∅ otherwise

Since X ′ is the least credit for σ′, we have that X ′ ⊆ σ′. Hence:

X = ({ei ∈ σ′ | σ′i 6` ei ∧ σ 6 ei} ∪

{
{e} if σ 6 e ∧ σ′ 6` e
∅ otherwise

By renaming e as en+1, we have σ = 〈e0 . . . enen+1〉, hence

X = ({ei ∈ σ | σi 6` ei ∧ σ 6 ei}

By Lemma 3.5, X is the least credit for σ. ut

Proof of Lemma 5.6:
Item (a) is straightforward by Def. 5.5.

For item (b⇒), let σ ∈ T(X). By induction on the length of σ = 〈e0 . . . en〉, we prove that for all i ≤ n,
if Yi is the least credit for σi, then (∅, ∅) σi−→ (σi, Yi). The base case is trivial, since the least credit for
σ0 = ε is Y0 = ∅. For the inductive case, by the induction hypothesis assume that (∅, ∅) σi−→ (σi, Yi).
Then, by Def. 5.5:

(σi, Yi)
ei−→ (σi+1,∆(σi, Yi, ei))

By Lemma 5.3, ∆(σi, Yi, ei) = Yi+1 is the least credit for σi+1.

For (b⇐), by an easy inductive argument on the length of σ (using Lemma 5.3 at each step) it follows
that, for all i ≤ n, if (∅, ∅) σi−→ (σi, Yi), then Yi is the least credit for σi. This implies σ ∈ T(X). ut

Proof of Theorem 5.8:
(⇒) Let C ∈ F(X), and let D ⊆fin C. By Lemma 3.3, there exists σ ∈ T(X) such that D ⊆ σ ⊆ C.
Let X0 ⊆fin X be the least credit for σ. By Lemma 5.6, we have (∅, ∅) σ−→ (σ,X0). Therefore, the thesis
follows by choosing C0 = σ.

(⇐) Let D ⊆fin C, and assume that (∅, ∅) σ−→ (C0, X0), for some σ and X0 such that C0 = σ,
D ⊆ C0 ⊆ C, and X0 ⊆ X . Assume that σ = 〈e0 . . . en〉, and that the trace has the form:

(∅, ∅) e0−→ (σ1, Y1)
e1−→ (σ2, Y2)

e2−→ · · · en−→ (σ, Yn)

where Yn = X0. By Lemma 5.6(b), we have σ ∈ T(X0). Since X0 ⊆fin X , by Lemma 3.2(b), it is also
true that σ ∈ T(X). Therefore, by Lemma 3.3 we conclude that C ∈ F(X). ut

Proof of Lemma 5.9:
(⇒) Let e ∈ R(X). By Def. 4.1, there exists C ∈ F(X) such that e ∈ C. Since C ∈ F(X), by
Theorem 5.8 there exists X0 ⊆fin X and C0 such that (∅, ∅)→∗ (C0, X0) and e ∈ C0 ⊆fin C.

(⇐) Let σ be such that (∅, ∅) σ−→ (C0, X0), with e ∈ C0 and X0 ⊆fin X . By Lemma 5.6(b), σ ∈ T(X0).
Thus, e ∈ σ ∈ F(X0). By Lemma 3.7(3.7), σ ∈ F(X). By Def. 4.1 we conclude that e ∈ R(X). ut

We now introduce the notion of trace with past, respect to a set of already happened events C, and a
credit X .

Definition B.1. (Trace with past)
For all C ⊆fin E, X ⊆ E, we say that σ = 〈e0 . . . en〉 ∈ E∗ is an X-trace with past C iff CF (C ∪ σ),
C ∩ σ = ∅, DF (σ), and

∀i ≤ n. (ei ∈ X ∨ C ∪ σi ` ei ∨ C ∪ σ ei) (9)

We denote with TCE (X) the set ofX-traces with pastC. Note that, whenX ⊆ C, we have TC(X) = TC .

Definition B.2. (Configuration with past)
For all P ⊆fin and X ⊆ E, we define the set FPE (X) of X-configurations with past P as follows:

FPE (X) = {C ⊆ E \ P | CF (C) ∧ ∀e ∈ C. ∃σ ∈ TPE (X). e ∈ σ ⊆ C}

Lemma B.3. Let X,C ⊆ E. Then, TC(X) = TC(X \ C)

Proof:
Straightforward from Def. B.1. ut

Lemma B.4. For all X,C ⊆ E, and σ, η ∈ E∗:

η ∈ T(X) ∧ σ ∈ TC ∧ η = C =⇒ ησ ∈ T(X)

Proof:
Let σ = 〈e0 . . . en〉 ∈ TC . By Def. B.1 we have CF (C ∪ σ), C ∩ σ = ∅, DF (σ), and

∀i ≤ n. (C ∪ σi ` ei ∨ C ∪ σ ei) (10)

Let η = 〈a0 . . . ak〉 ∈ T(X) be such that η = C. We have to prove that ν = ησ ∈ T(X), i.e. CF (ν),
DF (ν) and

∀i ≤ k. (ai ∈ X ∨ νi ` ai ∨ ν ai) ∧ (11)

∀k < i ≤ n. (ei ∈ X ∨ νi ` ei ∨ ν ei) (12)

Since CF (C ∪ η) then CF (ν). Since C∪σ and DF (σ), we have DF (ν). Since η ∈ T(X), (11) trivially
holds. For (12), we have two further subcases, based on how the event ei was justified in (10):

• C ∪ σi ` ei. Since i > k, we have C ∪ σi = νi, and then νi ` ei.

• C ∪ σ ei. Since C ∪ σ = ν, we have ν ei.
ut

Lemma B.5. Let (C,X) be a reachable state of LTSE. Then:

σ ∈ TC ⇐⇒ ∃X0 ⊆ X. (C,X)
σ−→ (C ∪ σ,X0)

Proof:
(⇒) Let σ ∈ TC . Since (C,X) is reachable, there exists η such that (∅, ∅) η−→ (C,X) and η = C;
so by Lemma 5.6, η ∈ T(X). By Lemma B.4, ησ ∈ T(X). Let X0 ⊆ X be the least credit of ησ.
By Lemma 5.6 we have (∅, ∅) ησ−→ (ησ,X0). Since LTSE is deterministic, we conclude that (C,X)

σ−→
(C ∪ σ,X0). The thesis follows because ησ = C ∪ σ.

(⇐) Since (C,X) is reachable, by Lemma 5.6 there exists η ∈ T(X) such that η = C and (∅, ∅) η−→
(C,X). By hypothesis there exists X0 such that (C,X)

σ−→ (C ∪ σ,X0). Summing up, (∅, ∅) ησ−→
(C ∪ σ,X0). By Lemma 5.6, X0 is the least credit for ησ. By Lemma 3.2(b), since ησ ∈ T(X0) and
X0 ⊆ X , we have ησ ∈ T(X). By Def. B.1, we conclude that σ ∈ TC(X), and the thesis follows from
Lemma B.3 because X ⊆ C. ut

Definition B.6. For all C ⊆fin E and X ⊆ E, we define:

RCE (X) =
⋃

FCE (X)

The following lemma relates reachability with past to (plain) reachability. Note that the inclusion
R(X) ⊇ RC(X) ∪ C does not hold. For instance, in the event structure with enabling {a} ` b and with
C = {a}, we have that R(∅) = ∅, but RC(∅) = {b}.

Lemma B.7. For all C ⊆fin E and X ⊆ E, RC(X) ∪ C = R(C ∪X).

Proof:
For (⊇), let e ∈ R(C ∪X). Then, there exists η ∈ T(C ∪X) such that e ∈ η. If e ∈ C, we already have
the thesis. Otherwise, assume e 6∈ C. Let η′ be the sequence obtained by removing from η all the events
in C, while preserving the order of the other events. It is easy to show that η′ ∈ TC(X) and e ∈ η′.
Therefore, e ∈ RC(X).

For (⊆), let e ∈ RC(X) ∪C. If e ∈ C, the thesis holds trivially. Otherwise, there exists σ ∈ TC(X)
such that e ∈ σ and σ ∩ C = ∅. Let σ′ = σC σ, where σC is an arbitrary sequentialisation of the events
in C. It is easy to show that σ′ ∈ T(C ∪X). Then, e ∈ R(C ∪X). ut

The following lemma provides an alternative characterisation of urgent events, in terms of traces with
past. An event e is urgent in (C,X) iff there exists a trace with past C such that the first element of the
trace is e, and the credit X is honoured by the events in the trace together with those in C.

Lemma B.8. For all e ∈ E, and for all reachable state (C,X) of LTSE,

e ∈ UCE (X) ⇐⇒ ∃σ. eσ ∈ TC ∧ C ∪ eσ X

Proof:
Straightforward after Lemma B.5 and Lemma 5.6(a). ut

Lemma B.9. For all C,X, σ, (C,X)
σ−⇀UE

(C ′, ∅) ⇐⇒ (C,X)
σ−→E (C ′, ∅).

Proof:
The direction (⇒) of (B.9) follows because −⇀UE

⊆−→E. The other direction can be easily proved by
induction on the length of σ. ut

Proof of Lemma 5.13:
To prove (⇒), we distinguish between two cases. If σ = ε, the statement holds trivially. Otherwise,
assume σ = νe, and let X be the least credit for ν ∈ T(X). Since νe ∈ TE, by Lemma 5.6 it must be
(∅, ∅) ν−→E (ν,X)

e−→E (νe, ∅). By Lemma B.5, we have that e ∈ Tν , and clearly νe X . Therefore, by
Lemma B.8 we conclude that e ∈ Uν(X). By Lemma B.9, we obtain the thesis (∅, ∅) ν−⇀UE

e−⇀UE
.

The direction (⇐) follows from Lemma B.5, since −⇀UE
⊆−→E. ut

Proof of Lemma 5.14:
Assume that (∅, ∅) σ−⇀UE

(σ,X), for some X . If X = ∅, we conclude by choosing η = ε. Otherwise, let
σ = 〈e0 · · · en〉, and let Ci = σi. Then, (∅, ∅) e0−⇀U (C1, X1)

e1−⇀U (C2, X2)
e2−⇀U · · ·

en−⇀U (σ,X). By
Def. 5.10, we have that for all i ≤ n, ei ∈ UCi(Xi). In particular, for i = n we have that there exists η
such that (σ,X)

η−→ (ση, ∅). The thesis follows directly by Lemma B.9. ut

Proof of Lemma 5.15:
For ⊆ of item (5.15), by Lemma 5.13 it follows that for all σ, η, if ση ∈ TE, then (∅, ∅) σ−⇀UE

. It is easy
to check that this implies the thesis.

For ⊇, assume that (∅, ∅) σ−⇀U (σ,X). By Lemma 5.14, there exists η such that (σ,X)
η−⇀U (ση, ∅). By

Lemma 5.13, ση ∈ TE. Therefore, all the events in σ are comprised in RE. ut

Lemma B.10. σ ∈ TC(X) ∧ σ′ ∈ TC(X) ∧ CF (σσ′) =⇒ (σσ′)↓ ∈ TC(X).

Proof:
Direct consequence of Def. B.1 and of Lemma 3.2. ut

The following lemma simplifies the characterisation of urgent events in terms of traces given by
Lemma B.8. This simplified characterisation only holds for conflict-free CES, and for those states (C,X)
which are reachable in the LTS −⇀UE

. Under this hypothesis, it is no longer needed to check that the
credits in X are honoured: this is already guaranteed by the fact that there exists a trace eσ in TC .
Therefore, for conflict-free CES the LTS −⇀UE

can be simplified by eliminating the component X from
the states. Note that, if (C,X) is not reachable in −⇀UE

, then the (⇐) direction of Lemma B.11 may be
false. For instance, in the CES with enablings a ` b and b a, consider the state ({b}, {b}), which is
not reachable in −⇀UE

. Then, 〈a〉 ∈ T{b}, but a is not urgent in ({b}, {b}).

Lemma B.11. For a a conflict-free CES E, and a reachable state (C,X) of −⇀UE
:

e ∈ UCE (X) ⇐⇒ ∃σ. eσ ∈ TCE

Proof:
The (⇒) direction is straightforward after Lemma B.8. For (⇐), let σ be such that (∅, ∅) σ−⇀U (C,X)

and σ = C, and assume that eν ∈ TC , for some ν. By Lemma 5.14, there exists η such that (C,X)
η−⇀U

(ση, ∅). By Lemma B.5, η ∈ TC , and by Lemma 5.6(a), C ∪ η X . By Lemma B.10, since CF (eνη)
then eνη↓ ∈ TC . By Lemma 5.6(b), σ ∈ T(X). Therefore, Lemma B.4 gives that σ(eνη)↓ ∈ T(X),

from which Lemma 3.5 yields σ(eνη)↓ ∈ T. Finally, Lemma 5.13 gives that (C,X)
(eνη)↓−−−−⇀U , which

concludes. ut

Proof of Lemma 5.17:
For the inclusion (⊆), let e ∈ ÛC(X). If e ∈ C, we already have the thesis. Otherwise, since (C,X) is a
reachable state of −⇀UE

, by Lemma B.11 it suffices to show some σ such that eσ ∈ TC . We now proceed
by cases on the rule used to deduce e ∈ ÛCE (X).

• (`Û). Let σ = ε. Then, eσ ∈ TC holds, because C ` e.

• (Û). Since R(C ∪X) e, by Notation 2.3 there exists D ⊆fin R(C ∪X) such that D e. By
Lemma B.7, R(C ∪X) = RC(X) ∪ C. By Def. B.6, RC(X) =

⋃
FC(X). Since configurations

with past enjoy coherence and E is conflict-free, then D \ C ⊆fin RC(X) ∈ FC(X). Thus, by
Def. B.2, there exists σ ∈ TC(X) such that σ ⊇ D \ C. Since X ⊆ C, this implies that σ ∈ TC .
Since C ∪ eσ ⊇ C ∪D e, then we conclude that there exists σ′ such that eσ′ = (eσ)↓ ∈ TC .

For the inclusion (⊇), let e ∈ UC(X) ∪ C. If e ∈ C, the thesis follows by rule (∈Û). Otherwise, if
e ∈ UC(X), by Lemma B.11, there exists σ such that eσ ∈ TC . There are the following two cases,
according to how e was justified in eσ.

• C ` e. By rule (`Û), we conclude that e ∈ ÛC(X), for all X .

• C ∪ eσ e. Since eσ ∈ TC , then eσ ∈ FC , and so by Def. B.6, eσ ⊆ RC . By Lemma B.7,
R(C) = RC ∪ C ⊇ eσ ∪ C e. Thus, by rule (Û), we conclude that e ∈ ÛC(∅).

ut

C. Proofs for Section 6

C.1. Propositional Contract Logic

Definition C.1. The Gentzen-style sequent calculus of PCL is defined by the rules in Fig. 5

As proved in [7], the sequent calculus of PCL enjoys cut elimination. A cut on a formula p is replaced
by cuts on strict subformulae of p, and cuts on p having a shorter proof tree. This makes PCL decidable.

Theorem C.2. (Cut Elimination [7])
If p is provable in PCL, then there exists a proof of p not using the (CUT) rule.

Hereafter, ϕ will range over conjunctions of atoms, and Φ will range over sets of conjunctions of
atoms. With a little abuse of notation, we shall use sets of events X in PCL formulae, actually standing
for the formula

∧
X .

Proof of Lemma 6.3:
Under the hypothesis of the lemma, by Theorem 4.7 we have RE(Φ) = R̂E(Φ). Consequently, we will
actually prove that ϕ ⊆ R̂E(Φ) iff [E]R , Φ `PCL ϕ.

For the (⇐) direction, assume that [E]R , Φ `PCL ϕ.
By Theorem C.2, consider a proof tree ∆ of [E]R , Φ `PCL ϕ without occurrences of the (CUT) rule.

The RHS of each sequent in ∆ has the form
∧
i∈I ei, and so ∆ only contains occurrences of the rules

(ID), (∧L1), (∧L2), (→L), (FIX). We prove ϕ ⊆ RE(Φ) ⇐⇒ [E]R ,Φ `PCL ϕ by induction on the
depth of ∆.

Γ, p ` p
(ID)

Γ ` p Γ, p ` q

Γ ` q
(CUT)

Γ, p ∧ q, p ` r

Γ, p ∧ q ` r
(∧L1)

Γ, p ∧ q, q ` r

Γ, p ∧ q ` r
(∧L2)

Γ ` p Γ ` q

Γ ` p ∧ q
(∧R)

Γ, p ∨ q, p ` r Γ, p ∨ q, q ` r

Γ, p ∨ q ` r
(∨L)

Γ ` p

Γ ` p ∨ q
(∨R1)

Γ ` q

Γ ` p ∨ q
(∨R2)

Γ, p→ q ` p Γ, p→ q, q ` r

Γ, p→ q ` r
(→L)

Γ, p ` q

Γ ` p→ q
(→R)

Γ,¬p ` p

Γ,¬p ` r
(¬L)

Γ, p ` ⊥
Γ ` ¬p

(¬R)
Γ,⊥ ` p

(⊥L)
Γ ` >

(>R)
Γ ` ⊥
Γ ` p

(WEAKR)

Γ ` q

Γ ` p� q
(ZERO)

Γ, p� q, a ` p Γ, p� q, q ` b

Γ, p� q ` a� b
(PREPOST)

Γ, p� q, r ` p Γ, p� q, q ` r

Γ, p� q ` r
(FIX)

Figure 5. Genzten-style proof system for PCL.

The base case concerns the axiom (ID), which gives:

ϕ ∈ Φ

[E]R , Φ ` ϕ
(ID)

Since ϕ ∈ Φ, then ϕ ⊆ Φ, so by Lemmata A.2(a) and A.2(b) we have ϕ ⊆ R̂(ϕ) ⊆ R̂(Φ).
For the inductive case, we proceed by cases on the last rule used in ∆. There are the following

exhaustive cases:

• case (∧L1). We have that Φ = Φ′, q ∧ r for some Φ′, so:

[E]R , Φ′, q ∧ r, q ` ϕ

[E]R , Φ′, q ∧ r ` ϕ
(∧L1)

By the induction hypothesis, ϕ ⊆ R̂(Φ ∪ q) = R̂(Φ).

• case (∧L2) similar to the previous one.

• case (→L). We have q → a ∈ [E]R for some conjunction of atoms q and atom a, and

[E]R , Φ, q → a ` q [E]R , Φ, a ` ϕ

[E]R , Φ, q → a ` ϕ
(→L)

By applying the induction hypothesis twice, we have q ⊆ R̂(Φ), and ϕ ⊆ R̂(Φ ∪ {a}).

Since q → a ∈ [E]R , by Def 6.2 it must be the case that q ` a ∈ E. By saturation, R̂(Φ) ` a.
Thus by (`R̂):

R̂(Φ) ` a
a ∈ R̂(Φ)

(`R̂)

By Lemma A.3, R̂(Φ ∪ {a}) = R̂(Φ), from which we conclude ϕ ⊆ R̂(Φ).

• case (FIX). We have q � a ∈ [E]R for some conjunction of atoms q and atom a, and

[E]R , Φ, q � a, ϕ ` q [E]R , Φ, a ` ϕ

[E]R , Φ, q � a ` ϕ
(FIX)

By applying the induction hypothesis twice, q ⊆ R̂(Φ ∪ ϕ), and ϕ ⊆ R̂(Φ ∪ {a}).

From the last inclusion, Lemma A.3 yields R̂(Φ ∪ {a} ∪ ϕ) = R̂(Φ ∪ {a}). Since q ⊆ R̂(Φ ∪ ϕ) ⊆
R̂(Φ ∪ {a} ∪ ϕ), then we also have q ⊆ R̂(Φ ∪ {a}).

Since q � a ∈ [E]R , by Def 6.2, it must be the case that q a ∈ E. Thus, by saturation
R̂(Φ ∪ {a}) a. By rule (R̂), we have:

R̂(Φ ∪ {a}) a

a ∈ R̂(Φ)
(R̂)

By Lemma A.3, R̂(Φ ∪ {a}) = R̂(Φ), therefore ϕ ⊆ R̂(Φ).

For the (⇒) direction, let ϕ ⊆ R̂(Φ), and let e ∈ ϕ. We will prove that [E]R , Φ `PCL e, which
implies the thesis. We proceed by induction on the depth of the derivation of e ∈ R̂(Φ). According to
the last rule used, we have the following cases:

• case (∈R̂). The premise of rule (∈R̂) prescribes that e ∈ Φ. By suitable application of rules
(ID), (∧L1) and (∧L2) we obtain the thesis [E]R ,Φ ` e.

• case (`R̂). We have:
R̂(Φ) ` e
e ∈ R(Φ)

(`R̂)

Since R̂(Φ) ` e, there must exists a minimal D ⊆fin R̂(Φ) such that D ` e ∈ E. By Def. 6.2, we
have that (

∧
D)→ e ∈ [E]R . By the induction hypothesis we have that for all d ∈ D, [E]R , Φ ` d.

Then:
I.H.

[E]R , Φ `
∧
D [E]R ,Φ, e ` e

(ID)

[E]R , Φ ` e
(→L)

• case (R̂). We have:
R̂(Φ ∪ {e}) e

e ∈ R̂(Φ)
(R̂)

Since R̂(Φ ∪ {e}) e, there must exist a minimal D ⊆fin R̂(Φ ∪ {e}) such that D e ∈ E.
Then, by Def. 6.2, we have that (

∧
D) � e ∈ [E]R . By the induction hypothesis we have that, for

all d ∈ D, [E]R , Φ, e ` d. Then:

I.H.

[E]R , Φ, e `
∧
D [E]R , Φ, e ` e

(ID)

[E]R , Φ ` e
(FIX)

ut

Proof of Lemma 6.6:
Item (a) follows by a straightforward inductive argument on the depth of the proof of [E]F , Φ `PCL ϕ.
For item (b), by Theorem C.2 consider a proof tree ∆ of [E]F , Φ `PCL ϕ without occurrences of the
(CUT) rule. The RHS of each sequent in ∆ is a conjunction of atoms, and so ∆ only contains occurrences
of the rules (ID), (∧L1), (∧L2), (∧R), (→L), (FIX). We proceed by induction on the depth of ∆; there are
the following exhaustive cases:

• (ID). The base case concerns the axiom (ID), which gives [E]F , Φ `PCL ϕ provided that ϕ ∈ Φ. We
have that ϕ [⊆ Φ

[⊆ Φ
!.

• (∧L1), (∧L2), and (∧R). Straightforward by the induction hypothesis.

• (→L). We have p→ e ∈ [E]F for some conjunction of atoms p and atom e, and:

[E]F , Φ, p→ e ` p [E]F , Φ, e ` ϕ
[E]F , Φ ` ϕ

(→L)

By applying item (a) on the leftmost premise of rule (→L) it follows that p ! ⊆ Φ
!. The formula

p → e ∈ [E]F must have been obtained as the encoding of an enabling Z ` e in E. Thus, by
Def. 6.5 it must be the case that p = !e ∧ Z ∧ !Z. We then have e ∈ p ! ⊆ Φ

!, and so since by
hypothesis Φ

[⊆ Φ
!:

(Φ ∪ {e}) [= Φ
[∪ {e} ⊆ Φ

! ∪ {e} = Φ
!

We can then apply the induction hypothesis on the rightmost premise of rule (→L), and obtain the
thesis ϕ [⊆ (Φ ∪ {e}) ! = Φ

!.

• (FIX). We have that p� e ∈ [E]F for some conjunction of atoms p and atom e, and:

[E]F , Φ, p� e, ϕ ` p [E]F , Φ, e ` ϕ
[E]F , Φ ` ϕ

(FIX)

By applying item (a) to the leftmost premise of (FIX), we obtain p ! ⊆ Φ
! ∪ ϕ !. The formula

p � e ∈ [E]F must have been obtained as the encoding of an enabling Z e in E. Thus, by
Def. 6.5 it must be the case that p = !e ∧ Z ∧ !Z. We then have e ∈ p ! ⊆ Φ

! ∪ ϕ !. By applying
item (a) to the rightmost premise of (FIX), we obtain ϕ ! ⊆ Φ

! ∪ {e} ! = Φ
!. Summing up,

(Φ ∪ {e}) [= Φ
[∪ {e} ⊆ Φ

! ∪ {e} ⊆ Φ
! ∪ p ! ⊆ Φ

! ∪ ϕ ! ⊆ Φ
!

We can then apply the induction hypothesis on the rightmost premise of rule (FIX), and obtain the
thesis ϕ [⊆ (Φ ∪ {e}) ! = Φ

!.

ut

Proof of Theorem 6.7:
For the (⇐) direction, we shall first prove the following statement. For all sets of conjunctions of atoms
Φ, and for all conjunctions of atoms ϕ:

[E]F , Φ `PCL ϕ ∧ Φ
[⊆ Φ

! ∧ CF (Φ
!
) =⇒ ∃C ′ ∈ F(Φ

[
). ϕ [⊆ C ′ ⊆ Φ

! (13)

By Theorem C.2, consider a proof tree ∆ of [E]F , Φ `PCL ϕ without occurrences of the (CUT) rule.
The RHS of each sequent in ∆ is a conjunction of atoms, and so ∆ only contains occurrences of the rules
(ID), (∧L1), (∧L2), (∧R), (→L), (FIX). We prove (13) by induction on the depth of ∆.

The base case concerns the axiom (ID), which gives [E]F , Φ `PCL ϕ whenever ϕ ∈ Φ. Let C ′ = ϕ [.
Then we have C ′ = ϕ [⊆ Φ

[⊆ Φ
!. Since CF (Φ

!
), then CF (C ′). By Lemma 3.7(3.7) we have

C ′ ∈ F(ϕ [), and so Lemma 3.7(3.7) gives the thesis C ′ ∈ F(Φ
[
).

For the inductive case, we analyse the last rule used in ∆. There are the following exhaustive cases:

• (∧L1) and (∧L2). Straightforward by the induction hypothesis.

• (∧R). For some conjunctions of atoms p and q such that ϕ = p ∧ q:

[E]F , Φ ` p [E]F , Φ ` q
[E]F , Φ ` p ∧ q

(∧R)

By applying the induction hypothesis on the two premises, we obtain:

∃C1 ∈ F(Φ
[
). p [⊆ C1 ⊆ Φ

! (14)

∃C2 ∈ F(Φ
[
). q [⊆ C2 ⊆ Φ

! (15)

Let C ′ = C1 ∪ C2. Since C1, C2 ⊆ Φ
! and CF (Φ

!
), we also have CF (C ′). Then, by Theo-

rem 3.12, C ′ ∈ F(Φ
[
). Furthermore, ϕ [= p [∪ q [⊆ C ′ ⊆ Φ

!.

• (→L). We have p→ e ∈ [E]F for some conjunction of atoms p and atom e, and:

[E]F , Φ, p→ e ` p [E]F , Φ, e ` ϕ
[E]F , Φ ` ϕ

(→L)

The formula p → e ∈ [E]F must have been obtained as the encoding of an enabling Z ` e in
E. Thus, by Def. 6.5 it must be the case that p = !e ∧ Z ∧ !Z. Since [E]F , Φ, p → e ` p, by
Lemma 6.6 it follows that p ⊆ Φ. Since p = !e ∧ Z ∧ !Z, we then have e ∈ p ! ⊆ Φ

!, and so since
by hypothesis Φ

[⊆ Φ
!:

(Φ ∪ {e}) [= Φ
[∪ {e} ⊆ Φ

! ∪ {e} = Φ
!

Note also that CF (Φ
!
) and CF ((Φ ∪ {e}) !). We can then apply the induction hypothesis twice

on the two premises, and obtain:

∃C1 ∈ F(Φ
[
). p [⊆ C1 ⊆ Φ

! (16)

∃C2 ∈ F(Φ
[∪ {e}). ϕ [⊆ C2 ⊆ Φ

! (17)

Let C ′ = C1 ∪ C2. Since C1, C2 ⊆ Φ
! and CF (Φ

!
), we also have CF (C ′). Since Z ` e

and Z = p [⊆ C1, then by saturation we also have that C1 ` e. Therefore, Lemma b gives
C ′ ∈ F(Φ

[
). The thesis follows by ϕ [⊆ ϕ [∪ p [⊆ C ′ ⊆ Φ

!.

• (FIX). We have that p� e ∈ [E]F for some conjunction of atoms p and atom e, and:

[E]F , Φ, p� e, ϕ ` p [E]F , Φ, e ` ϕ
[E]F , Φ ` ϕ

(FIX)

The formula p � e ∈ [E]F must have been obtained as the encoding of a circular enabling Z e
in E. Thus, by Def. 6.5 it must be the case that p = !e ∧ Z ∧ !Z. By applying Lemma 6.6 on
the sequent [E]F , Φ ` ϕ we have ϕ ⊆ Φ

!. Therefore, (Φ ∪ ϕ)
[

= Φ
[∪ ϕ [⊆ Φ

! ∪ ϕ ⊆ Φ
!,

By applying Lemma 6.6 on the sequent [E]F , Φ, ϕ ` p, we have p ! ⊆ Φ
! ∪ ϕ ! ⊆ Φ

!. Thus,
(Φ ∪ {e}) [⊆ Φ

! ∪ p ! ⊆ Φ
! ∪ p ⊆ Φ

!.

Note also that, since ϕ ! ⊆ Φ
!, then CF (Φ

! ∪ ϕ !) holds, as well as CF (Φ
! ∪ {e} !). We can then

apply the induction hypothesis twice on the two premises of rule (FIX):

∃C1 ∈ F(Φ
[∪ ϕ [). p [⊆ C1 ⊆ Φ

! (18)

∃C2 ∈ F(Φ
[∪ {e}). ϕ [⊆ C2 ⊆ Φ

! (19)

Let C ′ = C1 ∪ C2. Since C1, C2 ⊆ C and CF (C), we also have CF (C ′). Since Z e and Z ⊆
p [⊆ C1, by saturation we have C1 e. Since ϕ [⊆ C2, by (18) and by Lemma 3.7(3.7) we have
C1 ∈ F(Φ

[∪ C2). Therefore, by Lemma c, we obtain ϕ [⊆ p [∪ ϕ [⊆ C1 ∪ C2 = C ′ ∈ F(Φ
[
).

We now prove that (13) implies the thesis. Assume that [E]F , !C, X `PCL C, and [E]F , !C, X 6`PCL

⊥. Let Y = X ∩ C, let Φ = !C ∪
∧
Y , and let ϕ =

∧
C. Then, Φ

!
= ϕ [= C, and Φ

[
= Y .

By contradiction, assume that Φ
! is not conflict-free. Since Φ

!
= C, there must exist a, b ∈ C such

that a# b, and so by Def. 6.5 we would have that [E]F , !C `PCL (!a ∧ !b) → ⊥. This would imply
that [E]F , !C `PCL ⊥, which would contradict the hypothesis of the lemma. Therefore, CF (Φ

!
). Also,

Φ
[

= Y ⊆ C = Φ
[. We can then apply (13), from which we find some C ′ ∈ F(X) such that

ϕ [⊆ C ′ ⊆ Φ
!. Since C = ϕ [⊆ C ′ ⊆ Φ

!
= C, we have C ∈ F(Y). Since Y ⊆ X , by Lemma 3.7(3.7)

we obtain the thesis C ∈ F(X).

For the (⇒) direction, assume that C ∈ FE(X). Observe first that, since CF (C), then for all choices of
X ⊆ E it cannot be the case that [E]F , !C,X `PCL ⊥. By Lemma 3.4, there exists σ = 〈e1 . . . en〉 ∈
T(X) such that σ = C. We proceed by induction on |C \ X|. For the base case |C \ X| = 0, since
C ⊆ X , by rule (ID) we have that [E]F , !C,X `PCL C. For the inductive case, we assume that

C ∈ F(Y) =⇒ [E]F , !C, Y `PCL C (20)

holds for all Y such that |C \ Y | < |C \ X|. To do that, we prove the following statement, which
implies (20):

∀i ≤ n. Γ `PCL ei (21)

To prove (21) we proceed by (strong) induction on i: assuming that (21) holds for 1..i − 1, we prove
that it holds for i. We have the following three subcases, according to the way ei has been justified in
σ ∈ T(X).

• ei ∈ X . The thesis follows trivially by (ID).

• σi ` ei and ei 6∈ X . By the induction hypothesis of (21), Γ `PCL σi. By Def. 2.1, there must exist
a minimal Z ⊆ σi such that Z ` ei is an enabling in E. By Def. 6.5, [E]F contains the formula
p → ei, with p = !e ∧ Z ∧ !Z. The sequent Γ `PCL σi can be weakened as Γ `PCL Z, because
Z ⊆ σi. Since e ∈ C, Z ⊆ C, and Γ contains !C, we also have that Γ ` p. Therefore, by rule
(→L) we obtain the thesis:

Γ, p→ ei ` p Γ, p→ ei, ei ` ei
Γ, p→ ei ` ei

• C ei and ei 6∈ X . By Def. 2.1, there must exist a minimal Z ⊆ C such that Z ei is a circular
enabling in E. By Def. 6.5, [E]F contains the formula p � ei, with p = !ei ∧ Z ∧ !Z. Since
ei ∈ C \ X , we have that |C \ X| > |C \ (X ∪ {ei})|. Since C ∈ F(X), by Lemma 3.7(3.7)
we also have that C ∈ F(X ∪ {e}). Thus, the induction hypothesis on the statement (20) gives
[E]F , !C,X, ei ` C. This sequent can be weakened as Γ, ei ` Z, because Z ⊆ C. Since e ∈ C,
Z ⊆ C, and Γ contains !C, we also deduce that Γ, ei ` p. Therefore, by rule (FIX) we obtain the
thesis:

Γ, p� ei, ei ` p Γ, p� ei, ei ` ei
Γ, p� ei ` ei

ut

	Introduction
	Event structures with circular causality
	Basic results on traces and configurations
	Reachable events
	An LTS semantics of CES
	Relations with logics
	Reachability via logic
	Configurations via logic

	Related work and conclusions
	Proofs for Section 4
	Proofs for Section 5
	Proofs for Section 6
	Propositional Contract Logic

