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Abstract. We address the problem of designing distributed applications
which require the interaction of loosely-coupled and mutually distrusting
services. In this setting, services can use contracts to protect themselves
from unsafe interactions with the environment: when their partner in an
interaction does not respect its contract, it can be blamed (and punished)
by the service infrastructure. We extend a core calculus for services, by
using a semantic model of contracts which subsumes various kinds of
behavioural types. In this formal framework, we study some notions of
honesty for services, which measure their ability to respect contracts,
under different assumptions about the environment. In particular, we
find conditions under which these notions are (un)decidable.

1 Introduction

Service-Oriented Computing (SOC) fosters a programming paradigm where dis-
tributed applications can be constructed by discovering, integrating and using
basic services [18]. These services may be provided by different organisations,
possibly in competition (when not in conflict) among each other. Further, ser-
vices can appear and disappear from the network, and they can dynamically
discover and invoke other services in order to exploit their functionality, or to
adapt to changing needs and conditions. Therefore, programmers of distributed
applications have to cope with such security, dynamicity and openness issues in
order to make their applications trustworthy.

A possible way to address these issues is to use contracts. When a service
needs to use some external (possibly untrusted) service, it advertises to a SOC
middleware a contract which specifies the offered/required interaction protocol.
The middleware establishes sessions between services with compliant contracts,
and it monitors the communication along these sessions to detect contract vio-
lations. These violations may happen either unintentionally, because of errors in
the service specification, or because of malicious behaviour.

When the SOC middleware detects contract violations, it sanctions the re-
sponsible services. For instance, the middleware in [3] decreases the reputation
of the culprit, in order to marginalise services with low reputation during the
selection phase. Therefore, a new form of attacks arises: malicious users can try
to make some service sanctioned by exploiting possible discrepancies between
the promised and the actual behaviour of that service. A crucial problem is then
how to avoid such attacks when deploying a service.



However, designing an honest service which always respects its contracts re-
quires one to fulfil its obligations also in adversarial contexts which play against.
We illustrate below that, even for a fairly simple application composed by only
three services, this is not an easy task.

An example. Consider an online store taking orders from buyers. The store sells
two items: item A, which is always available and costs e1, and item B, which
costs e1 when in stock, and e3 otherwise. In the latter case, the store orders
item B from an external distributor, which makes the store pay e2 per item.

The store advertises the following contract to potential buyers:

1. let the buyer choose between item A and item B;
2. if the buyer chooses item A, then receive e1, and then ship the item to him;
3. if the buyer chooses item B, offer a quotation to the buyer (e1 or e3);
4. if the quotation is e1, then receive the payment and ship;
5. if the quotation is e3, ask the buyer to pay or cancel the order;
6. if the buyer pays e3, then either ship the item to him, or refund e3.

We can formalise such contract in several process algebras. For instance, we
can use the following session type [20] (without channel passing):

TB = buyA.pay1E.shipA &

buyB.(quote1E.pay1E.shipB ⊕ quote3E.T ′B ⊕ abort)

T ′B = pay3E.(shipB⊕ refund) & quit

where e.g., buyA represents a label in a branching construct (i.e., receiving an
order for item A from the buyer), while quote1E represents a label in a selection
construct (i.e., sending an e1 quotation to the buyer). The operator ⊕ separates
branches in an internal choice, while & separates branches in an external choice.

The protocol between the store and the distributor is the following:

TD = buyB.(pay2E.shipB ⊕ quit)

Note that the contracts above do not specify the actual behaviour of the store,
but only the behaviour it promises towards the buyer and the distributor. A
possible informal description of the actual behaviour of the store is the following:

1. advertise the contract TB ;
2. when TB is stipulated, let the buyer choose item A (buyA) or B (buyB);
3. if the buyer chooses A, get the payment (pay1E), and ship the item (shipA);
4. otherwise, if the buyer chooses B, check if the item is in stock;
5. if item B is in stock, provide the buyer the quotation of e1 (quote1E), receive

the payment (pay1E), and ship the item (shipB);
6. otherwise, if item B is not in stock, advertise the contract TD ;
7. when TD is stipulated, pre-order item B from the distributor (buyB);
8. send a e3 quotation to the buyer (quote3E) and wait for the buyer’s reply;
9. if the buyer pays e3 (pay3E), then pay the distributor (pay2E), receive the

item from the distributor (shipB), and ship it to the buyer (shipB).
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The store service terminates correctly whenever two conditions hold: the
buyer is honest, and at step 7 the middleware selects an honest distributor.
Such assumptions are necessary. For instance, in their absence we have that:

(a) if the buyer is dishonest, and he does not send e3 at step 9, then the store
does not fulfil its obligation with the distributor, who is expecting a payment
or a cancellation;

(b) if the middleware finds no distributor with a contract compliant with TD ,
then the store is stuck at line 7, so it does not fulfil its obligation with the
buyer, who is expecting a quotation or an abort;

(c) if the distributor is dishonest, and it does not ship the item at line 9, then
the store does not fulfil its obligation with the buyer, who is expecting to
receive the item or a refund;

(d) if the buyer chooses quit at line 8, the store forgets to handle it; so, it will
not fulfil the contract with the distributor, who is expecting pay2E or quit.

Therefore, we would classify the store process above as dishonest. In practice,
this implies that a concrete implementation of such store could be easily attacked.
For instance, an attacker could simply order item B (when not in stock), but
always cancel the transaction. The middleware will detect that the store is vi-
olating the contract with the distributor, and consequently it will sanction the
store. Concretely, in the middleware of [3] the attacker will manage to never be
sanctioned, and to arbitrarily decrease the store reputation, so preventing the
store from being able to establish new sessions with buyers.

The example above shows that writing honest processes is an error-prone
task: this is because one has to foresee all the possible points of failure of each
partner. We handle all such points in Example 6, where we show a provably
honest store process.

Specifying contract-oriented services. To formalise and study honesty, we first
fix the formal setting, which consists of two basic ingredients:

– a model of contracts, which specify the promised behaviour of a service.
– a model of processes, which specify the actual behaviour. Such behaviour in-

volves e.g. checking compliance between contracts, making a contract evolve
upon actions, etc., and so it also depends on the contract model.

Ideally, a general theory of honesty should abstract as much as possible from
the actual choices for the two models. However, different instances of the models
may give rise to different notions of honesty — in the same way as different pro-
cess calculi may require different notions of observational equivalences. Contin-
uing the parallel with process calculi, where a process calculus may have several
different behavioural equivalences/preorders, it is also reasonable that, even in
a specific contract/process model, many relevant notions of honesty exist.

In this paper we focus on a quite general model of contracts: arbitrary LTSs.
In particular, states denote contracts, and labels represent internal actions and
synchronisations between two services at the endpoints of a session (Section 2).
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We interpret compliance between two contracts as the absence of deadlock in
their parallel execution, similarly to [1,2,13]. This model allows for a syntax-
independent treatment of contracts (like e.g. session types, see Section 2.2).

To formalise processes, we build upon CO2 [10]: this is a minimalistic calculus
with primitives for advertising contracts, opening sessions, and doing contractual
actions. In Section 3 we extend the calculus of [10] by modifying the synchro-
nisation primitive to use arbitrary LTSs as contracts, and the advertisement
primitive to increase its expressiveness.

Contributions. The main contribution of the paper is the study of some notions
of honesty, their properties, and their decidability. In particular:

1. We show that two different notions of honesty coincide (Theorem 1). The
first one (originally introduced in [8]) says that a process is honest when, in
all possible contexts, whenever it has some contractual obligations, it can
interact with the context and eventually fulfil said obligations. The second
notion is a variant (introduced here), which requires a process to be able (in
all possible contexts) to fulfil its obligations on its own, without interacting
with the context. This result simplifies the design of static analyses for hon-
esty, since it allows for abstracting the moves of the context when one has
to decide whether a process is fulfilling its obligations.

2. We prove that systems of honest processes are deadlock-free (Theorem 6).
3. We introduce a weaker notion of honesty, where a process is required to be-

have honestly only when its partners are honest (Definition 15). For instance,
weak honesty ensures the absence of attacks such as items b and d in the
store example, but it does not rule out attacks such as items a and c. Un-
like systems of honest processes, systems of weakly honest processes may get
stuck, because of circular dependencies between sessions (see Example 8).

4. We show that if a process using session types as contracts is honest in all
contexts which use session types as contracts, then it is honest in all arbitrary
contexts (Theorem 5). This property has a practical impact: if some static
analyses tailored on session types (like e.g., that in [7]) determines that a
process is honest, then we can safely use such process in any context — also
in those which use a different contract model.

5. We study decidability of honesty and weak honesty. First, for any given
Turing Machine, we show in Theorem 7 how to craft a CO2 process which
simulates it. We then prove that this process is honest (according to any of
the notions presented above) if and only if said Turing Machine is not halting.
From this we establish the undecidability of all the above-mentioned notions
of honesty, in all possible models of contracts which include session types.
Overall, this generalises a result in [10], which establishes the undecidability
of (strong) honesty in an instance of CO2 using τ -less CCS contracts [13].

6. We find a syntactic restriction of CO2 and a constraint on contracts under
which honesty is decidable (Theorem 8).

7. We find a class of contracts for which dishonesty of (unrestricted) CO2 pro-
cesses is recursively enumerable (Theorem 9).
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2 Contracts

We now provide a semantic setting for contracts. In Section 2.1 we model con-
tracts as states of a Labelled Transition System (LTS) with two kinds of la-
bels: internal actions, which represent actions performed by one participant,
and synchronisation actions, which model interactions between participants. As
an example, in Section 2.2 we show that session types can be interpreted in this
setting. In Section 2.3 we provide contracts with a notion of compliance, which
formalises correct interactions between services which respect their contracts.

2.1 A model of contracts

Assume a set of participants (ranged over by A,B, . . .), a recursive set L (ranged
over by a, b, . . .) with an involution · , and a recursive set Λτ (ranged over
by τ , τa, τ i, . . .). We call Λa = L ∪ L the set of synchronisation actions, and
Λτ the set of internal actions. We then define the set Λ of actions as the disjoint
union of Λa and Λτ , and we let α, β, . . . range over Λ.

We develop our theory within the LTS (U, Λ, −→), where:

– U is a set (ranged over by c, d, . . .), called the universe of contracts;
– −→ ⊆ U×Λ×U is a transition relation between contracts, with labels in Λ.

We denote with Ufin the set of finite-state contracts, i.e. for all c ∈ Ufin , the
contracts reachable from c with any finite sequence of transitions is finite. We
denote with 0 a contract with no outgoing transitions, and we interpret it as a
success state. We write: R∗ for the reflexive and transitive closure of a relation
R, and c

α−→ c′when (c, α, c′) ∈ −→. Furthermore, sometimes we express contracts
through the usual CCS operators [24]: for instance, we can write the contract c1
in Figure 1 as the term τ a. a + τ b. b.

While a contract describes the intended behaviour of one of the two partici-
pants involved in a session, the behaviour of two interacting participants A and
B is modelled by the composition of two contracts, denoted by A : c ‖B : d. We
specify in Definition 1 an operational semantics of these contract configurations:
internal actions can always be fired, while synchronisation actions require both
participants to enable two complementary actions. Note that the label of a syn-
chronisation is not an internal action (unlike e.g., in CCS [24]); this is because
in the semantics of CO2 we need to inspect such label in order to make two
processes synchronise (see rule [DoCom] in Figure 3).

Definition 1 (Semantics of contract configurations). We define the tran-
sition relation −→→ between contract configurations (ranged over by γ, γ ′, . . .) as
the least relation closed under the following rules:

c
τ−→ c′

A : c ‖ B : d
{A}:τ−−−−→→ A : c′ ‖ B : d

d
τ−→ d′

A : c ‖ B : d
{B}:τ−−−−→→ A : c ‖ B : d′

c
a−→ c′ d

a−→ d′

A : c ‖ B : d
{A,B}:a−−−−−→→ A : c′ ‖ B : d′
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c1

τ a
a

τ b b

(1)

c2

a

b

(2)

c3

a

τ
b

(3)

c4
b a

(4)

c5

a b

b a

(5)

Fig. 1: Some simple contracts.

2.2 Session types as contracts

Session types [19,20] are formal specifications of communication protocols be-
tween the participants at the endpoints of a session. We give in Definition 2 a
version of session types without channel passing, similarly to [1].

Definition 2 (Session types). Session types are terms of the grammar:

T ::=
˘
i∈Iai .Ti

∣∣ ⊕
i∈Iai .Ti

∣∣ recX T
∣∣ X

where (i) the set I is finite, (ii) all the actions in external (resp. internal) choices
are pairwise distinct and in L (resp. in L), and (iii) recursion is prefix-guarded.

A session type is a term of a process algebra featuring a selection construct
(i.e., an internal choice among a set of branches, each one performing some
output), and a branching construct (i.e., an external choice among a set of inputs
offered to the environment). We write 0 for the empty (internal/external) choice,
and we omit trailing occurrences of 0. We adopt the equi-recursive approach, by
considering terms up-to unfolding of recursion.

We can interpret session types as contracts, by giving them a semantics in
terms of the LTS defined in Section 2.1.

Definition 3. We denote with ST the set of contracts of the form T or [a]T ,
with T closed, and transitions relation given by the following rules:

˘
i∈I ai .Ti

ak−→Tk (k ∈ I)
⊕

i∈I ai .Ti
τ i−→[ak]Tk (k ∈ I) [a]T

a−→T
An external choice can always fire one of its prefixes. An internal choice⊕
i∈Iai .Ti must first commit to one of the branches ak .T k, and this produces

a committed choice [ak]T k, which can only fire ak. As a consequence, a session
type may have several outgoing transitions, but internal transitions cannot be
mixed with synchronisation ones. There cannot be two internal transitions in
a row, and after an internal transition, the target state will have exactly one
reduct. Note that ST ( Ufin .

Example 1. The contract c1 in Figure 1 represents the session type a⊕ b: since
it is an internal choice, according to Definition 3 there is a commit on the chosen
branch before actually firing the synchronisation action. The contract c2 is in
ST as well, as it represents an external choice a & b. Instead, the last three
contracts do not belong to ST: indeed, in c3 an internal transition is mixed with
an input one; in c4 there is no internal transition before b; finally, in c5 input and
output transitions are mixed (note that c5 represents an asynchronous output
of a followed by an input of b, as in the asynchronous session types of [9]). ut
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2.3 Compliance

Among the various notions of compliance appeared in the literature [4], here we
adopt progress (i.e. the absence of deadlock). In Definition 4 we say that c and
d are compliant (in symbols, c ./ d) iff, when a reduct of A : c ‖ B : d cannot
take transitions, then both participants have reached success. A similar notion
has been used in [13] (for τ -less CCS contracts) and in [1,2] (for session types).

Definition 4 (Compliance). We write c ./ d iff:

A : c ‖ B : d −→→∗ A : c′ ‖ B : d′ 6−→→ implies c′ = 0 and d′ = 0

Example 2. Consider contracts in Figure 1. We have that c1 ./ c2 and c4 ./ c5,
while all the other pairs of contracts are not compliant. ut

3 Contract-oriented services

We now extend the process calculus CO2 of [10], by parameterising it over an
arbitrary set C of contracts. As a further extension, while in [10] one can advertise
a single contract at a time, here we allow processes to advertise sets of contracts,
which will be stipulated atomically (see Definition 6). This will allow us to
enlarge the set of honest processes, with respect to those considered in [10].

3.1 Syntax

Let V and N be disjoint sets of, respectively, session variables (ranged over
by x, y, . . .) and session names (ranged over by s, t, . . .); let u, v, . . . range over
V ∪ N , and u, v, . . . over 2V∪N . A latent contract {↓x c} represents a contract
c which has not been stipulated yet; the variable x will be instantiated to a
fresh session name upon stipulation. We also allow for sets of latent contracts
{↓u1 c1, . . . , ↓uk ck}, to be stipulated atomically. We let C,C ′, . . . range over sets
of latent contracts, and we write CA when the contracts are signed by A.

Definition 5 (CO2 syntax). The syntax of CO2 is defined as follows:

π ::= τ
∣∣ tellC

∣∣ dou α (Prefixes)

P ::=
∑
i πi.P i

∣∣ P | P ∣∣ (u)P
∣∣ X(u) (Processes)

S ::= 0
∣∣ A[P ]

∣∣ CA

∣∣ s[γ ]
∣∣ S | S ∣∣ (u)S (Systems)

We also assume the following syntactic constraints on processes and systems:

1. each occurrence of X(u) within a process is prefix-guarded;
2. each X has a unique defining equation X(u) , P , with fv(P ) ⊆ {u} ⊆ V;
3. in (u)(A[P ] | B[Q] | · · · ), it must be A 6= B;
4. in (u)(s[γ ] | t[γ ′] | · · · ), it must be s 6= t;

We denote with PC the set of all processes with contracts in C.
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(u)A[P ] ≡ A[(u)P ] Z | 0 ≡ Z Z | Z′ ≡ Z′ | Z (Z | Z′) | Z′′ ≡ Z | (Z′ | Z′′)

Z | (u)Z′ ≡ (u)(Z | Z′) if u 6∈ fv(Z) ∪ fn(Z)

(u)(v)Z ≡ (v)(u)Z (u)Z ≡ Z if u 6∈ fv(Z) ∪ fn(Z)

Fig. 2: Structural congruence (Z ranges over processes, systems, latent contracts)

Processes specify the actual behaviour of participants. A process can be a
prefix-guarded finite sum

∑
i πi.P i, a parallel composition P | Q, a delimited

process (u)P , or a constant X(u). We write 0 for
∑
∅ P , and π1.Q1 + P for∑

i∈I∪{1} πi.Qi, provided that P =
∑
i∈I πi.Qi and 1 6∈ I. If u = {u1, . . . , uk},

we write (u)P for (u1) · · · (uk)P . We omit trailing occurrences of 0.

Prefixes include the silent action τ , contract advertisement tellC , and ac-
tion execution dou α, where the identifier u refers to the target session.

A system is composed of agents (i.e., named processes) A[P ], sessions s[γ ],
signed sets of latent contracts CA , and delimited systems (u)S . Delimitation (u)
binds session variables and names, both in processes and systems. Free variables
and names are defined as usual, and their union is denoted by fnv( ). A sys-
tem/process is closed when it has no free variables. We denote with K a special
participant name (playing the role of broker) not occurring in any system.

3.2 Semantics

We define the semantics of CO2 as a reduction relation on systems (Figure 3).
This uses a structural congruence, which is the smallest relation satisfying the
equations in Figure 2. Such equations are mostly standard — we just note that
(u)A[(v)P ] ≡ (u)(v)A[P ] allows to move delimitations between CO2 systems
and processes. In order to define honesty in Section 4, we decorate transitions

with labels, by writing
A : π−−−→ for a reduction where participants A fire π .

Rule [Tau] fires a τ prefix. Rule [Tell] advertises a set of latent contracts C .
Rule [Fuse] inspects latent contracts, which are stipulated when compliant pairs
are found through the B relation (see Definition 6 below). Upon stipulation,
one or more new sessions among the stipulating parties are created. Rule [DoTau]

allows a participant A to perform an internal action in the session s with con-
tract configuration γ (which, accordingly, evolves to γ ′). Rule [DoCom] allows two
participants to synchronise in a session s. The last three rules are standard.

Definition 6. The relation C1
A1
| · · · | CkAk Bσ s1[γ1] | · · · | sn[γn] holds iff:

1. for all i ∈ 1..k, Ci = {↓xi,1 ci,1, . . . , ↓xi,mi ci,mi}, and the variables xi,j are
pairwise distinct;
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A[τ . P + P ′ |Q]
{A} : τ−−−−→ A[P |Q] [Tau]

A[tellC . P + P ′ |Q]
{A} : τ−−−−→ A[P |Q] | CA

[Tell]

C1
A1 | · · · | CkAk Bσ S ′ ran σ ∩ fn(S) = ∅

(dom σ)(C1
A1 | · · · | CkAk | S)

{K} : τ−−−−→ (ran σ)(S ′ | Sσ)
[Fuse]

γ
{A}:τa−−−−→→ γ ′

A[dos τa . P + P ′ |Q] | s[γ ]
{A} : dos τa−−−−−−−→ A[P |Q] | s[γ ′]

[DoTau]

γ
{A,B}:a−−−−−→→ γ ′

A[dos a. P + P ′ | P ′′] | B[dos a. Q +Q′ |Q′′] | s[γ ]
{A,B} : dos a−−−−−−−−→

A[P | P ′′] | B[Q |Q′′] | s[γ ′]

[DoCom]

X(u) , P A[P {v/u} |Q] | S A : π−−−→ S ′

A[X(v) |Q] | S A : π−−−→ S ′
[Def]

S
A : π−−−→ S ′

(u)S
A : delu(π)−−−−−−−→ (u)S ′

[Del] where delu(π) =

{
τ if u ∈ fnv(π)

π otherwise

S
A : π−−−→ S ′

S | S ′′ A : π−−−→ S ′ | S ′′
[Par]

Fig. 3: Reduction semantics of CO2.

2. for all i ∈ 1..k, let Di = {(Ai, xi,h, ci,h) |h ∈ 1..mi}. The set
⋃
iDi is parti-

tioned into a set of n subsets Mj = {(Aj , xj , cj), (Bj , yj , dj)} such that, for
all j ∈ 1..n, Aj 6= Bj, cj ./ dj, and γj = Aj : cj ‖ Bj : dj;

3. σ = {s1/x1,y1 , · · · , sn/xn,yn} maps session variables to pairwise distinct ses-
sion names s1, . . . , sn.

Example 3. Let S = (x, y, z, w) (CA | C ′B | C ′′C | S0), with S0 immaterial, and:

C = {↓x a, ↓y b} C ′ = {↓z a} C ′′ = {↓w b}

Further, let σ = {s/x,z , t/y,w}, γAB = A : a | B : a and γAC = A : b | C : b.
According to Definition 6 we have that CA | C ′B | C ′′C Bσ s[γAB ] | t[γAC ]. In fact:

1. C , C ′ and C ′′ contain pairwise distinct variables;
2. letting DA = {(A, x, a) ,

(
A, y, b

)
}, DB = {(B, z, a)} and DC = {(C, w, b)},

we can partition DA ∪DB ∪DC into the subsetsMAB = {(A, x, a) , (B, z, a)}
and MAC = {

(
A, y, b

)
, (C, w, b)}, where a ./ a and b ./ b.

3. σ maps session variables x, z, y, w to pairwise distinct session names s, t.

Therefore, by rule [Fuse], we have: S
{K} : τ−−−−→ (s, t)

(
s[γAB ] | t[γAC ] | S0σ

)
. ut
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Example 4. Let S = A[(x) X(x)] | B[(y) Y(y)], where:

X(x) , tell {↓x a}. dox a Y(y) , tell {↓y a}. doy a

A maximal computation of S is the following:

S
{B} : τ−−−−→ A[(x) X(x)] | (y) (B[doy a] | {↓y a}B) [Tell]

{A} : τ−−−−→ (x, y) (A[dox a] | B[doy a] | {↓x a}A | {↓y a}B) [Tell]

{K} : τ−−−−→ (s)
(
A[dos a] | B[dos a] | s[A : a ‖ B : a]

)
[Fuse]

{A,B} : dos a−−−−−−−−→ (s) (A[0] | B[0] | s[A : 0 ‖ B : 0]) [DoCom]

4 Honesty: properties and variants

CO2 allows for writing dishonest processes which do not fulfil their contracts, in
some contexts. Below we formalise some notions of honesty, which vary accord-
ing to the assumptions on the context. We start by introducing some auxiliary
notions. The obligations OA

s (S) of a participant A at a session s in S are those
actions of A enabled in the contract configuration within s in S .

Definition 7 (Obligations). We define the set of actions OA
s (S) as:

OA
s (S) =

{
OA(γ) if ∃S ′ . S ≡ s[γ ] | S ′

∅ otherwise
where OA(γ) = {α | ∃A .γ {A}∪A:α−−−−−−→→}

The set S ↓Au (called ready-do set) collects all the actions α such that the
process of A in S has some unguarded prefixes dou α.

Definition 8 (Ready-do). We define the set of actions S ↓Au as:

S ↓Au =
{
α | ∃v, P , P ′, Q, S ′ . S ≡ (v)

(
A[dou α. P + P ′ |Q] | S ′

)
∧ u 6∈ v

}
4.1 Honesty

A participant is ready in a system if she can fulfil some of her obligations there
(Definition 10). To check if A is ready in S , we consider all the sessions s in
S involving A. For each of them, we check that some obligations of A at s are
exposed after some steps (of A or of the context), not preceded by other dos of
A. These actions are collected in the set S ⇓As .

Definition 9 (Weak ready-do). We define the set of actions S ⇓Au as:

S ⇓Au =
{
α | ∃S ′ : S

6=(A : dou)−−−−−−→∗ S ′ and α ∈ S ′ ↓Au
}

where S
6=(A : dou)−−−−−−→ S ′ iff ∃A, π . S

A : π−−−→ S ′ ∧ (A /∈ A ∨ ∀α . π 6= dou α).
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The set RdyA
s collects all the systems where A is ready at session s. This hap-

pens in three cases: either A has no obligations, or A may perform some internal
action which is also an obligation, or A may perform all the synchronisation
actions which are obligations.

Definition 10 (Readiness). RdyA
s is the set of systems S such that:

OA
s (S) = ∅ ∨ OA

s (S) ∩ Λτ ∩ S ⇓As 6= ∅ ∨ ∅ 6= (OA
s (S) ∩ Λa) ⊆ S ⇓As

We say that A is ready in S iff ∀S ′,u, s . S ≡ (u)S ′ implies S ′ ∈ RdyA
s .

We can now formalise when a participant is honest. Roughly, A[P ] is honest
in a fixed system S when A is ready in all reducts of A[P ] |S . Then, we say that
A[P ] is honest when she is honest in all systems S .

Definition 11 (Honesty). Given a set of contracts C ⊆ U and a set of pro-
cesses P ⊆ PC , we say that:

1. S is A-free iff it has no latent/stipulated contracts of A, nor processes of A
2. P is honest in P iff, for all S made of agents with processes in P :

∀A :
(
S is A-free ∧ A[P ] | S −→∗ S ′

)
=⇒ A is ready in S ′

3. P is honest iff P ∈HC , where:

HC = {P ∈ PU | P is honest in PC}

Note that in item 2 we quantify over all A: this is needed to associate P to a
participant name, with the only constraint that such name must not be present
in the context S used to test P . In the absence of the A-freeness constraint,
honesty would be impractically strict: indeed, were S already carrying stipulated
or latent contracts of A, e.g. with S = s[A : pay100Keu ‖ B : pay100Keu], it
would be unreasonable to ask participant A to fulfil them. Note however that S
can contain latent contracts and sessions involving any other participant different
from A: in a sense, the honesty of A[P ] ensures a good behaviour even in the
(quite realistic) case where A[P ] is inserted in a system which has already started.

Example 5. Consider the following processes:

1. P 1 = (x) tell {↓x a + τ .b}. dox τ . dox b
2. P 2 = (x) tell {↓x a}. (τ .dox a + τ .dox b)

3. P 3 = (x) tell {↓x a + b}. dox a
4. P 4 = (x) tell {↓x a}.X(x) X(x) , τ . dox a + τ .X(x)

5. P 5 = (x y) tell {↓x a}. tell {↓y b}. dox a. doy b

Processes P 1 and P 4 are honest, while the others are not. In P 2, if the rightmost
τ is fired, then the process cannot do the promised a. In P 3, if the contract of
other participant at x is b, then P 3 cannot do the corresponding b. There are
two different reasons for which P 5 is not honest. First, in contexts where y is
fused and x is not, the doy b can not be reached (and so the contract at y is not
respected). Second, also in those contexts where both sessions are fused, if the
other participant at x never does a, then doy b cannot be reached. ut
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Example 6. We now model in CO2 the store process outlined in Section 1. Rather
than giving a faithful formalisation of the pseudo-code in Section 1, which we
observed to be dishonest, we present an alternative version. The process P below
is honest, and it can be proved such by the honesty model checker in [7]. Within
this example, we use doτx a as an abbreviation for dox τ a . dox a.

P = (x) tell {↓x TB}A . (dox buyA. PA(x) + dox buyB. PB(x))

PA(x) , dox pay1E. do
τ
x shipA

PB(x) , (y)
(
τ . doτx quote1E.dox pay1E. do

τ
x shipB +

τ . tell {↓x TD}A .doτy buyB.doτx quote3E. PB2(x, y) +

τ . P abort(x, y)
)

P abort(x, y) , doτx abort | doτy buyB | doτy quit
PB2(x, y) , dox pay3E. PB3(x, y) + dox quit. do

τ
y quit + τ . P abort2(x, y)

P abort2(x, y) , (dox pay3E. do
τ
x refund + dox quit) | doτy quit

PB3(x, y) , doτy pay2E. PB4(x, y) + τ . P abort3(x, y)

P abort3(x, y) , doτx refund | doτy quit
PB4(x, y) , doy shipB. do

τ
x shipB + τ . P abort4(x, y)

P abort4(x, y) , doτx refund | doy shipB

4.2 Solo-honesty

The notion of honesty studied so far requires that, in all contexts, whenever A
has some obligations, the system must be able to evolve to a state in which A
exposes some do (the ready-do) to fulfil her obligations. In other words, A is
allowed to interact with the context, from which she can receive some help.

A natural variant of honesty would require A to be able to fulfil her obli-
gations without any help from the context. To define this (intuitively stricter)
variant of honesty, we modify the definition of weak ready-do to forbid the rest
of the system to move. The actions reachable in such way are then named solo
weak ready-do, and form a smaller set than the previous notion. The definitions
of solo-ready and solo-honest consequently follow — mutatis mutandis.

Definition 12 (Solo weak ready-do). S ⇓A-solo
u is the sets of actions:

S ⇓A-solo
u =

{
α | ∃S ′ . S (A : 6=dou)−−−−−−→∗ S ′ and α ∈ S ′ ↓Au

}
where S

(A : 6=dou)−−−−−−→ S ′ iff ∃π . S
{A} : π−−−−→ S ′ ∧ (∀α. π 6= dou α).

Definition 13 (Solo readiness). RdyA-solo
s is the set of systems S such that:

OA
s (S) = ∅ ∨ OA

s (S) ∩ Λτ ∩ S ⇓A-solo
s 6= ∅ ∨ ∅ 6= (OA

s (S) ∩ Λa) ⊆ S ⇓A-solo
s

We say that A is solo-ready in S iff ∀S ′,u, s . S ≡ (u)S ′ implies S ′ ∈ RdyA-solo
s .
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Definition 14 (Solo honesty). We say that P is solo-honest in S iff

∀A :
(
S is A-free ∧ A[P ] | S −→∗ S ′

)
=⇒ A is solo-ready in S ′

We now relate solo honesty with the notion of honesty in Definition 11. As
expected, when considering a fixed context S , solo honesty implies honesty, and
is in general a stricter notion. However, being honest in all contexts is equivalent
to being solo-honest in all contexts, as established by the following theorem.

Theorem 1. For all processes P and systems S :

1. if P is solo-honest in S , then P is honest in S ;

2. the converse of item 1 does not hold, in general;

3. P is solo-honest iff P is honest.

Proof. Item 1 follows from definition of solo-readiness and S ⇓A-solo
s ⊆ S ⇓As .

For item 2, let:

P = A[(x, y) tell {↓x a}. tell {↓y b}. dox a. doy b]

S = B[(z) tell {↓z a}. doz a] | C[(w) tell {↓w b}. dow b]

We have that P is honest in S , but not solo-honest in S . Indeed, after both
contracts of A get stipulated, A needs to perform b in session y, but she can
only do that if B cooperates, allowing A to first perform a in session x.

For item 3, the “only if” direction immediately follows from item 1. For the “if”
direction, assume by contradiction that P is honest but not solo-honest, i.e.:

A[P ] | S →∗ (v) (A[P ′] | S ′)

where A[P ′] has some obligations to perform for which she can not reach any
related ready do on her own, but needs to interact with the context S ′ to do
that. In such case, it is possible to craft another A-free initial system S ′′, which
behaves exactly as S in the computation shown above, yet stops interacting at
the end of such computation. Basically, given the computation above, we can
construct S ′′ as the parallel composition of agents of the form B[(x)π1. . . . .πn].
Each prefix πi performs a tell or a do in the same order as in the computation
above. This makes it possible to obtain an analogous computation

A[P ] | S ′′ →∗ (v) (A[P ′] | S ′′′)

where S ′′′ does no longer interact with A. However, since A is honest, she must
be able to fulfil her obligations with the help of her context in A[P ′] | S ′′′. Since
the context does not cooperate, she must actually be able to do that with solo
transitions — contradiction. ut
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4.3 Weak honesty

The honesty property requires a process to be ready even in those (dishonest)
contexts where the other participants avoid to do the required actions. A weaker
variant of honesty may require a process P to behave correctly provided that
also the others behave correctly, i.e. that P is ready in honest contexts, only.

Definition 15 (Weak honesty). Given a set of contracts C, we define the set
of weakly honest processes as:

WC = {P ∈ PU | P is honest in HC}

Example 7. The process P 5 from Example 5 is not weakly honest. Let, e.g.:

Q5 = (w) (tell {↓w b}. dow b)

which is clearly honest. However, by reducing A[P 5] | C[Q5] we reach the state:

S = (s, x)
(
A[dox a. dos b] | C[dos b] | s[A : b ‖ C : b]

)
where A is not ready. The problem here is that there is no guarantee that the
contract on x is always stipulated. We can fix this by making A advertise both
contracts atomically. This is done as follows:

P 5
′ = (x, y) tell {↓x a , ↓y b}. dox a. doy b

The process P 5
′ is weakly honest, but it is not honest: in fact, in a context where

the other participant in session x does not fire a, A is not ready at y. ut

The following theorem states that the set of weakly honest processes is larger
(for certain classes of contracts, strictly) than the set of honest ones.

Theorem 2. For all C, HC ⊆WC . Furthermore, HST 6= WST.

Proof. The inclusion follows from Definition 15; the inequality from the process
P 5
′ in Example 7, which belongs to WST but not to HST. ut

The definition of HC requires honesty in all contexts, i.e. in all systems
composed of processes in PC . Instead, WC requires honesty in all HC contexts.
This step can be iterated further: what if we require honesty in all WC contexts?
As we establish below, we get back to HC .

Theorem 3. For all C: HC = {P |P is honest in WC}.

Proof (Sketch). The ⊆ inclusion trivially holds. For the ⊇ inclusion, it is possible
to craft a context of weakly honest processes which open sessions with P , possibly
interact with P in such sessions for a while, and then stop to perform any action.
This can be achieved as follows:

B[(x, y, z) tell {↓z c}. tell {↓x a , ↓y b}. dox a . doy b. Q] |
C[(v, w) tell {↓v a , ↓w b}. dow b. dov a]
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where c is a contract compliant with some of the contracts P advertises, and Q
is a honest implementation of c. Note that B above can also start two sessions
with contracts {↓x a , ↓y b} with C, which however will deadlock because B
and C perform the actions in a different order. This will cause Q to never be
reached. Yet, both B and C are weakly honest: each of them would work fine in
a honest context, since no deadlock would be possible there. The context above
can also be adapted to postpone the deadlock so to effectively stop in the middle
of executing Q, i.e. in the middle of session z. Because P must be honest in this
weakly honest context, P must, at any time, be able to perform its obligations
without relying on the context. Hence, P ∈HC . ut

4.4 Some properties

The function λX.HX is anti-monotonic, as formalised by the following theorem
(which follows directly from Definition 11).

Theorem 4. If C ⊆ D, then HC ⊇HD.

The following theorem states a peculiar property of processes which use ses-
sion types as contracts. If some of such processes is honest in all contexts where
contracts are session types, then it is honest in all possible contexts.

Theorem 5. PST ∩HST = PST ∩HU .

Proof. The inclusion ⊇ follows by Theorem 4. For the inclusion ⊆, assume by
contradiction that P ∈ HST \HU , i.e. P is honest in PST, but not honest in
PU . Then, there exists some S made of agents with processes in PU such that:

A[P ] | S →∗ (v) (A[P ′] | S ′ | s[A : c ‖ B : d]) (1)

where A[P ′] has some obligations at s, such that either:

1. c is an internal choice, and no internal transition of A is included in the weak
ready-do set of A at s, or

2. c is an external (or committed) choice, and the weak ready-do set does not
include all the labels enabled by A : c ‖ B : d.

We can craft an A-free system S ′′ (with processes in PST) which interacts with
A as S in (1), after which it does nothing (except possibly firing dos τ ). We can
construct S ′′ as the parallel composition of agents of the form B[(x)π1 . . . .. πn].
Each prefix πi performs a tell or a do in the same order as in (1), after
removing from it the steps not involving A: e.g., a tell of a contract which is
not stipulated with A is omitted. Instead, a tell of a contract di 6∈ ST which will
be fused with some ci of A is replaced by tell ci, where ci is the syntactic dual
of ci (which always exists and belongs to ST). We then obtain a computation:

A[P ] | S ′′ →∗ (v) (A[P ′] | S ′′′ | s[A : c ‖ B : c])

where S ′′′ does no longer interact with A, except possibly firing dos τ , if enabled.
In the resulting system, A is not ready: therefore, P is not honest in S ′. ut
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The following theorem establishes a crucial property of honest processes, i.e.
that deadlock-freedom at the level of contracts is preserved when passing to the
level of (honest) processes. This means that all open sessions can be carried
forward until their successful termination.

Theorem 6 (Deadlock freedom). Let S be a system of honest agents. If
S −→∗ (u)

(
S ′ | s[γ ]) with OA(γ) 6= ∅, then there exist S ′′, A, and α ∈ OA(γ)

such that S ′ | s[γ ] −→∗ S ′′ {A}∪A : dos α−−−−−−−−−→.

Proof. Assume first that OA(γ) only contains synchronisation actions, and let:

γ
{A,B}:a−−−−−→→ S = A[P ] | B[Q] | · · · S0 = S ′ | s[γ ]

with P and Q honest by hypothesis. By item 3 of Theorem 1, P and Q are also
solo-honest. By Definition 7 it must be a ∈ OA

s (S0) and a ∈ OB
s (S0), and so

by Definition 14 it must be a ∈ S0 ⇓A-solo
s and a ∈ S0 ⇓B-solo

s . Since P is solo-

honest, by Definition 13 we have that ∃S ′0 .S0
(A : 6=dos)−−−−−−→∗ S ′0 and a ∈ S ′0 ↓As . Since

B has taken no transitions in this computation, and the contract configuration
at s is still γ , it must be a ∈ OB

s (S ′0), and a ∈ S ′0⇓B-solo
s . Since Q is solo-honest,

by Definition 13 we have that ∃S ′′ .S ′0
(B : 6=dos)−−−−−−→∗ S ′′ and a ∈ S ′′ ↓Bs . Since A has

taken no transitions in this computation, and the contract configuration at s is
still γ , at this point we have a ∈ S ′′ ↓As and a ∈ S ′′ ↓Bs . Then, by rule [DoCom], we

obtain the thesis S0 = S ′ | s[γ ] −→∗ S ′′ {A,B} : dos α−−−−−−−−→. The case where OA(γ) may
contain internal actions is similar. ut

Example 8. Note that Theorem 6 would not hold if we required weak honesty
instead of honesty. For instance, consider the process P 5

′ in Example 7, and let:

Q5
′ = (x, y) tell {↓x a , ↓y b}. doy b. dox a

Both P 5
′ and Q5

′ are weakly honest, but their composition A[P 5
′] | B[Q5

′] gets
stuck on the first do, since neither dox a nor doy b can be fired. ut

5 Decidability results

In this section we prove that both honesty and weak honesty are undecidable.

5.1 Honesty is undecidable

The following theorem states that honesty is undecidable, when using contracts
which are at least as expressive as session types. To prove it, we show that the
complement problem, i.e. deciding if a participant is dishonest, is not recursive.

Theorem 7. HC is not recursive if C ⊇ ST.
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Proof. We reduce the halting problem on Turing machines to the problem of
checking dishonesty of P 0 ∈ PC . This immediately gives the thesis. Given an
arbitrary Turing machine M , we represent its configurations as finite sequences
(λ0, ?) (λ1, ?) · · · (λn, q) · · · (λk, ?), where:

1. λi represents the symbol written at the i-th cell of the tape,
2. ? is not a state of M (just used to represent the absence of the head);
3. the single occurrence of the pair (λn, q) denotes that the head of M is over

the n-th cell, and M is in state q,
4. the tape implicitly contains “blank” symbols at cells after position k,
5. λi and q range over finite sets.

Without loss of generality, assume that M halts only when its head is over λ0
and M is in the halting state qstop.

We now devise an effective procedure to construct a process P 0 which is
dishonest if and only if M halts on the empty tape. This P 0 has the form:

(x) tell {↓x c}. dox τ a . dox a. P (2)

where c = recX.a.X, and P will be defined below. Intuitively, P 0 will interact
with the context in order to simulate M ; concretely, this will require P 0 to create
new sessions. Note that some contexts may hinder P 0 in this simulation, e.g. by
not advertising contracts or by refusing to interact properly in these sessions.
Roughly, we will have that:

– in all contexts, P 0 will behave honestly in all sessions, except possibly in x;
– if the context does not cooperate, then P 0 will stop simulating M , but will

still behave honestly in all sessions (including x);
– if the context cooperates, then P 0 will simulate M while being honest; only

when M halts, P 0 will become dishonest, by stopping to do the required
actions in session x.

The above intuition suffices for our purposes. Formally, we guarantee that:

1. if M does not halt, then P 0 is honest in all contexts (and therefore honest);
2. if M halts, then P 0 is not honest in at least one (cooperating) context (and

therefore dishonest).

We represent each cell of the tape as a contract dλ,ρ in which λ is a symbol of
the alphabet of M , and ρ is either a state of M or ?. More precisely, we specify
dλ,ρ by mutual recursion as:

dλ,ρ = readλ,ρ.dλ,ρ ⊕
⊕

λ′ writeλ′ .dλ′,ρ ⊕
⊕

ρ′ writeρ′ .dλ,ρ′

where readλ,ρ, writeλ, writeρ are output actions. Note in passing that mutual
recursion can be reduced to single recursion via the rec construct (up to some
unfolding, as by Bekić’s Theorem): therefore, dλ,ρ ∈ ST.
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We now sketch the construction of process P in (2). Intuitively, P uses the
above contracts in separate sessions (one for each tape cell), and it evolves into
processes of the form:

Begin(s0, s1) |X(s0, s1, s2) |X(s1, s2, s3) | · · · | End(sn−1, sn)

where s0, . . . , sn are distinct session names, and the contract of P at session si
is dλi,ρi . The intuition underlying processes Begin, X, and End is the following:

– a process X( , si, ) is responsible for handling the i-th cell. It starts by
reading the cell, which is obtained by performing:∑

λ,ρ dosi τ readλ,ρ . dosi readλ,ρ .Handleλ,ρ

Note that only one branch of the above summation is enabled, i.e. the one
carrying the same λ, ρ as in the contract at session si. We now have the
following two cases:
• if the head of M is not on the i-th cell (i.e., ρ = ?), we have that

Handleλ,ρ recursively calls X. This makes the process repeatedly act on
si, so making P behave honestly at that session.

• if the head is on the i-th cell, Handleλ,ρ updates the cell according to
the transition rules of M , and then it moves the head as needed. Assume
that q′ is the new state of M , λ′ is the symbol written at the i-th cell,
and that j ∈ {i− 1, i+ 1} is the new head position. In the process, the
cell update is obtained by performing writeλ′ in si, and the head update
is obtained by performing write? in si and writeq′ in sj .

– the process Begin(s0, s1) handles the leftmost cell of the tape. Intuitively,
it behaves as X( , s0, s1), but it also keeps on performing dox τ a and dox a.
In this way, Begin(s0, s1) respects the contract c in (2). When Begin(s0, s1)
reads from s0 that ρ = qstop, it stops performing the required actions at
session x. This happens when M halts (which, by the assumptions above,
can only happen when the head of M is on the leftmost cell). In this way,
P 0 behaves dishonestly at session x.

– the process End(sn−1, sn) handles the rightmost cell of the tape. Intuitively,
it behaves as X(sn−1, sn, ), but it also waits to read ρ 6= ?, meaning that the
head has reached the (rightmost) n-th cell. When this happens, the process
End(sn−1, sn) creates a new session sn+1, by advertising a contract d#,?,
where # is the blank tape symbol. Until the new session sn+1 is established,
it keeps on acting on sn, in order to behave honestly on that session. Once
sn+1 is established, it spawns a new process X(sn−1, sn, sn+1), and then
recurse as End(sn, sn+1).

A crucial property is that it is possible to craft the above processes so that in
no circumstances (including hostile contexts) they make P 0 dishonest at si. For
example, X( , si, ) is built so that it never stops performing reads at si. This
property is achieved by encoding each potentially blocking operation dosk α. P

′

as Q = dosk α. P
′ +
∑
λ,ρ dosi readλ,ρ . Q. Indeed, in this way, reads on si are
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continuously ready, preserving honesty. A similar technique is used to handle
those τα which need to be performed without blocking the other activities.

To conclude, given a Turing Machine M we have constructed a process P 0

such that (i) if M does not halt, then P 0 is honest, while (ii) if M halts, then P 0

is not honest in some (cooperating) context. Note that a context which cooper-
ates with P 0 always exists: since all the advertised contracts are session types, a
context can simply advertise the duals of all the contracts possibly advertised by
A (a finite number), and then (recursively) perform all the promised actions. ut

5.2 Decidability of honesty in fragments of CO2

While honesty of general CO2 processes is undecidable, we can recover decidabil-
ity in fragments of CO2. In particular, by using the model-checking technique
of [7], we can verify the honesty of processes which are essentially finite state,
i.e. they have no delimitation/parallel under process definitions. This technique
uses an abstract semantics of CO2 which preserves the transitions of an agent
A[P ], while abstracting from the context wherein A[P ] is run. This is established
by the following theorem.

Theorem 8. P ∈ HC is decidable if (i) P has no delimitation/parallel under
process definitions, and (ii) C ⊆ Ufin .

Proof (Sketch). Building upon this abstract semantics of [7], we obtain an ab-
stract notion of honesty which simulates the moves of unknown contexts, and it
is sound and complete w.r.t. honesty. (i.e., P is abstractly honest iff it is honest,
see [7] for further details). Since the abstract semantics is finite-state whenever
P is such, then we can decide honesty of P by model-checking its state space
under the abstract semantics. ut

5.3 Dishonesty is recursively enumerable

We show in Theorem 9 that dishonesty is recursively enumerable, under certain
assumptions on the set of contracts. Together with Theorem 7, it follows that
honesty is neither recursive nor recursively enumerable.

Theorem 9. HC is recursively enumerable if (i) for all c ∈ C, {α | c α−→} is a
finite set, and it is computable from c, and (ii) C ⊆ Ufin .

Proof. We prove that “A[P ] dishonest” is a r.e. property. By item 3 of Theorem 1,
it suffices to prove that “A[P ] solo-dishonest” is a r.e. property. By Definition 14,
A[P ] is not solo-honest iff there exists some A-free context S such that A is not
solo-honest in A[P ] | S . This holds when A is not solo-ready in some residual of
A[P ] | S , i.e. when the following conditions hold for some S, S ′, s,u: (1) S is
A-free; (2) A[P ] | S −→∗ (u) S ′; (3) S ′ /∈ RdyA-solo

s .
Recall that p(x, y) r.e. implies that q(y) = ∃x.p(x, y) is r.e., provided that x

ranges over an effectively enumerable set (e.g., systems S , or sessions s). Thus,
to prove the above existentially-quantified property r.e. it suffices to prove that
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1), 2), 3) are r.e.. Property 1 is trivially recursive. Property 2 is r.e. since one
can enumerate all the possible finite traces. Property 3 is shown below to be
recursive, by reducing the problem to a submarking reachability problem in
Petri Nets, which is decidable [17]. We recall the definition of S ′ ∈ RdyA-solo

s :

OA
s (S ′) = ∅ ∨ OA

s (S ′) ∩ Λτ ∩ S ′⇓A-solo
s 6= ∅ ∨ ∅ 6= (OA

s (S ′) ∩ Λa) ⊆ S ′⇓A-solo
s

To prove the above property recursive, we start by noting that, by hypothesis,
OA
s (S ′) is a finite set, and it can be effectively enumerated from A, s, S ′. We

shall shortly prove that α ∈ S ′ ⇓A-solo
s is a recursive property. Exploiting this,

the above formula can be simply decided by enumerating all the elements of
OA
s (S ′), and testing whether they belong to S ′⇓A-solo

s .
We now show how to decide α ∈ S ′⇓A-solo

s . This is a reachability problem in
CO2, once restricted to solo transitions. This restriction allows us to neglect all
the other participants but A in S ′. Further, in the solo computations of S ′, A
can open only as much fresh sessions as the number of latent contracts already
in S ′, which is trivial to compute given S ′. More in general, starting from S ′, A
can only interact with a bounded number of sessions: those already open, and
those which will be created later.

We now focus on the process P in S ′ = (u)(A[P ] | · · · ). W.l.o.g., we can
assume P is a (delimited) parallel composition of Xi(u), where each Xi is defined
as
∑
j πj . P j , where (again) P j is a delimited parallel composition of Xi(u). Note

that we only need a finite number of such Xi. Further, in the computations of S ′,
the process of A can only be a parallel composition of (copies of) Xi(u), where
the components of u range over the finitely many session names discussed earlier,
and (delimited) variables. Since only a finite number of variables can actually
be instantiated with a session name, we focus on these and neglect the others
in a non-deterministic way (roughly, we can follow the technique used in [5] to
non-deterministically choose which variables to neglect).

Overall, the process of A is a multiset of finitely many copies of Xi(u): hence,
it can be represented by a Petri Net whose places correspond to each Xi(u),
and tokens account for their multiplicity. Further, when considering solo com-
putations, the context of A[P ] in S ′ is finite-state: it has finitely many sessions,
each of with finitely many states, by hypothesis. Hence, the whole system can
be represented by a Petri Net, whose transitions simulate the CO2 semantics.

Concluding, to decide α ∈ S ′⇓A-solo
s it suffices to build the above Petri Net,

and check whether a marking is reachable with at least one token in at least one
of the places corresponding to Xi(. . .) = dos α. P

′ + Q. This is a submarking
reachability problem, which is decidable [17]. ut

5.4 Weak honesty is undecidable

Theorem 10. WC is not recursive if C ⊇ ST.

Proof. Easy adaptation of the proof of Theorem 7. Indeed, the process P 0 defined
in that proof is honest when the Turing Machine does not halt (hence it is also
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weakly honest by Theorem 2), and it is dishonest when it halts. The dishonesty
is caused by P 0 stopping to interact in session x, which instead requires infinitely
many actions to be performed. Even in honest contexts, P 0 would still violate
its contract, hence it is not weakly honest. ut

6 Related work and conclusions

We have presented a theory of honesty in session-based systems. This theory
builds upon two basic notions, i.e. the classes H (Definition 11) and W (Def-
inition 15) which represent two extremes in a hypothetical taxonomy of “good
service behaviour”. At the first extreme, there is the class H of honest pro-
cesses, which always manage to respect their contracts, in any possible context.
Systems of honest agents guarantee some nice properties, e.g. deadlock-freedom
(Theorem 6). However, this comes at a cost, as honest processes must either
realize their contracts by operating independently on the respective sessions, or
by exploiting “escape options” in contracts to overcome the dependence from
the context. At the other extreme, we have a larger class W of weakly honest
processes, which make stronger assumptions about the context, but they do not
enjoy deadlock-freedom, e.g. a system of weakly honest agents might get stuck.

Our investigation about honesty started in [10], where we first formalised
this property, but in a less general setting than the one used in this paper. In
particular, the contracts used in [10] are prefix-guarded τ -less CCS terms [13],
provided with a semantics which forces the participants at the endpoints of
a session to interact in turns. This is needed because the notion of honesty
introduced in [10] is based on culpability : roughly, a participant is culpable in
γ whenever she has enabled actions there. To be honest, one must be able to
exculpate himself in each reachable state. The turn-based semantics of τ -less CCS
contracts ensures that at each execution step only one participant is culpable,
and that one can exculpate himself by doing the required actions. The turn-based
semantics of contracts has a consequence on the process level: actions must be
performed asynchronously. This means that a participant can fire dos α whenever
α is enabled by the contract configuration at s. However, the requirement of
having turn-based semantics of contracts has a downside: since many semantics
of session types and other formalisms for contracts are synchronous, one has to
establish the equivalence between the synchronous and the turn-based semantics.
We did this in [7] for untimed session types, and in [2] for timed session types.
The version of CO2 defined in this paper overcomes these issues, by allowing for
synchronous actions in contracts and in processes. This extension of CO2 also
makes it possible to use arbitrary LTSs as contracts. The other extension of CO2

we have introduced in this paper is to allow processes to atomically advertise a set
of contracts, so to have a session established only when all of them are matched
with a compliant one. This enlarges the class of honest processes, making the
calculus more expressive (see e.g. process P 5

′ in Example 7).
The undecidability result presented in this paper (Theorem 7) subsumes the

one in [10], where honesty was proved undecidable for processes using τ -less CCS
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contracts. The new result is more general, because it applies to any instance of
CO2 with a contract model as least as expressive as session types.

Safe computable approximations of honesty (with session types as contracts)
were proposed in [8,7], either in the form of type systems or model checking
algorithms. Since the new version of CO2 can deal with a more general model
of contracts, it would be interesting to investigate computable approximation
of honesty in this extended setting. We believe that most of the techniques
introduced in [7] can be reused to this purpose: indeed, their correctness only
relies on the fact that contracts admit a transition relation which abstracts from
the context while preserving the concrete executions (as in Theorem 4.5 in [7]).

In the top-down approach to design a distributed application, one specifies its
overall communication behaviour through a choreography, which validates some
global properties of the application (e.g. safety, deadlock-freedom, etc.). To en-
sure that the application enjoys such properties, all the components forming the
application have to be verified; this can be done e.g. by projecting the choreog-
raphy to end-point views, against which these components are verified [26,21].
This approach assumes that designers control the whole application, e.g., they
develop all the needed components. However, in many real-world scenarios sev-
eral components are developed independently, without knowing at design time
which other components they will be integrated with. In these scenarios, the
compositional verification pursued by the top-down approach is not immedi-
ately applicable, because the choreography is usually unknown, and even if it
were known, only a subset of the needed components is available for verification.
The ideas pursued in this paper depart from the top-down approach, because
designers can advertise contracts to discover the needed components (and so
ours can be considered a bottom-up approach). Coherently, the main property
we are interested in is honesty, which is a property of components, and not of
global applications. Some works mixing top-down and bottom-up composition
have been proposed [15,25,23,6] in the past few years.

The problem of ensuring safe interactions in session-based systems has been
addressed to a wide extent in the literature [20,21,22]. In many of these ap-
proaches, deadlock-freedom in the presence of interleaved sessions is not di-
rectly implied by typeability. For instance, the two (dishonest) processes P 5

′

and Q5
′ in examples 7 and 8. would typically be well-typed. However, the com-

position A[P 5
′] | B[Q5

′] reaches a deadlock after fusing the sessions: in fact, A
remains waiting on x (while not being ready at y), and B remains waiting on
y (while not being ready at x). Multiple interleaved sessions has been tackled
e.g. in [16,11,12,14]. To guarantee deadlock freedom, these approaches usually
require that all the interactions on a session must end before another session can
be used. For instance, the system A[P 5

′] | B[Q5
′] would not be typeable in [12],

coherently with the fact that it is not deadlock-free. The resulting notions seem
however quite different from honesty, because we do not necessarily classify as
dishonest processes with interleaved sessions. For instance, the process:

(x, y) tell {↓x a}. tell {↓y b}.
(
dox a. doy b + doy b. dox a

)
would not be typeable according to [12], but it is honest in our theory.
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