Primitives for Contract-based Synchronization

Massimo Bartoletti
Dipartimento di Matematica e Informatica, Univegsitegli Studi di Cagliari

Roberto Zunino
Dipartimento di Ingegneria e Scienza dell'Informazione, Univardigli Studi di Trento

We investigate how contracts can be used to regulate thaatiten between processes. To do that, we
study a variant of the concurrent constraints calculusqmtesl in[[1] , featuring primitives for multi-
party synchronization via contracts. We proceed in twodfiogs. First, we exploit our primitives to
model some contract-based interactions. Then, we disavgséveral models for concurrency can
be expressed through our primitives. In particular, we dedberr-calculus and graph rewriting.

1 Introduction

A contract is a binding agreement stipulated between two or more partie$) dibtates their rights and
their duties, and the penalties each party has to pay in case the contradiéasmoared.

In the current practice of information technology, contracts are notdiffarent from those legal
agreements traditionally enforced in courts of law. Both software andcesreommit themselves to re-
spect some (typically weak, if not “without any expressed or implied wéytaservice level agreement.
In the case this is not honoured, the only thing the user can do is to takestegalagainst the software
vendor or service provider. Since legal disputes may require a lot of imegell as relevant expenses,
such kinds of contracts serve more as an instrument to discourage nagkees than making easier for
users to demand their rights.

Recent research has then addressed the problem of devising neswokiowhtracts, to be exploited
for specifying and automatically regulating the interaction among users andesproviders. See e.d./[6,
18,[11,[13[20], to cite a few. A contract subordinates the behaviounipesl by a client (e.g. “I will pay
for a service X”) to the behaviour promised by a service (e.g. “I will jlewou with a service Y”), and
vice versa The crucial problems are then how to formalise the concept of contrawtfdiunderstand
when a set of contracts gives rise to an agreement among the stipulatiies,pand how to actually
enforce this agreement in an open, and possibly unreliable, environment.

In the Concurrent Constraint Programming (CCP) paradign[23, &k wrent processes commu-
nicate through a global constraint store. A process can add a cotsttaithe store through theellc
primitive. Dually, the primitiveask c makes a process block until the constraiig entailed by the store.
Very roughly, such primitives may be used to model two basic operation®mnacts: atellc is for
publishing the contraat, and arask c’ is for waiting until one has to fulfill some duty.

While this may suggest CCP as a good candidate for modelling contract-inésexttions, some
important features seem to be missing. Consider e.g. a set of partiespfésraig her own contract.
When some of the contracts at hand give rise to an agreement, all the ohyalitees accept the contract,
and start interacting to accomplish it. A third party (possibly, an “electrorociticof law) may later on
join these parties, so to provide the stipulated remedies in the case an infrimtgtentiee contract is
found. To model this typical contract-based dynamics, we need the abilityaking all the parties

ICE 2010
EPTCS ??, 20?7, pp.[1316, d0i:10.4204/EPTCS[??.??

http://dx.doi.org/10.4204/EPTCS.??.??

2 Primitives for Contract-based Synchronization

involved in a contract synchronise when an agreement is found, ekiabls session. Also, we need to
allow an external party to join a running session, according to some condititire status of the contract.

In this paper we study a variant ¢f [1], an extension of CCP which allewvsiodelling such kinds
of scenarios. Our calculus features two primitives, cafled andjoin: the first fuses all the processes
agreeing on a given contract, while the second joins a process with theselyaparticipating to a
contract. Technically, the preftusex ¢ probes the constraint store to find whether it entagilwhen this
happens, the variabbeis bound to a fresh session identifier, shared among the parties involveel in th
contract. Such parties are chosen accordingoca minimal fusiorpolicy. The prefixoin, c is similar,
yet it looks for an already existing session identifier, rather than creatiresh one. While our calculus
is undogmatic about the underlying constraint system, in the contract-besedrios presented here we
commit ourselves to using PCL formulaé [1] as constraints.

Contributions. Our contribution consists of the following points. In Sédt. 2 we study a cadoiu
contracting processes. Compared to the calculus in [1], the one in this ¢iffpes in the treatment of
the main primitivesuse andjoin, which have a simplified semantics. Moreover, we also provide here
a reduction semantics, and compare it to the labelled one. In[$ect. 3 we shoalculus suitable for
modelling complex interactions of contracting parties. In $éct. 4 we substamtagement made inl[1],

by showing how to actually encode into our calculus some common concuiiddoms, among which

the rr-calculus [19] and graph rewriting [21]. In Sekct. 5 we discuss furtliéerences between the two
calculi, and compare them with other frameworks.

2 A contract calculus

We now define our calculus of contracting processes. The calculus isrdiontteat in [1], yet it diverges

in the treatment of the crucial primitivésse andjoin. We will detail the differences between the two
versions in Secf.]5. Our calculus features bo#imes ranged over by, m, ..., andvariables ranged
over byx,y, Constraints areermsover variables and names, and include a special eletnghie set

of constraintd is ranged over bg,d. Our calculus is parametric with respect to an arbitrary constraint
system(D,) (Def.[d).

Definition 1 (Constraint system [24]) A constraint system is a paiD,), where D is a countable set,
and -C 2(D) x D is a relation satisfying: (i) G- c whenever & C; (ii) C i~ c whenever for all cc C'
we have G- ¢, and C - ¢; (iii) for any ¢, CF c whenever G- L.

Syntax. Names in our calculus behave similarly to the names imtoalculus: that is, distinct names
represent distinct concrete objects. Instead, variables behave aanttes in the fusion calculus: that
is, distinct variables can be bound to the same concrete object, so theg dasedl. Afusiono is a
substitution that maps a set of variables to a single name. We avritdn/x} for the fusion that replaces
each variable iX with the namen. We use metavariablesb, ... to range over both names and variables.

Definition 2 (Processes)The set of prefixes and processes are defined as follows:

=T |tellc| checkc | askC | joinyC | fusexC (prefixes)
Pi=c| 3 .R|PP|(@)P]|X(d) (processes)

Prefixesrrincluder (the silent operation as in CCS), as welltal, check andask as in Concurrent
Constraints[[24]. The prefitellc augments the context with the constrainfThe prefixcheck c checks

M. Bartoletti & R. Zunino 3

if ¢ is consistent with the context. The prefixk c causes a process to stop until the constraiigt
entailed by the context. The prefixse, c andjoin, c drive the fusion of the variabbe in two different
flavours. The prefijoin, C instantiatesx to any known nameprovided that after the instantiation the
constrainfc is entailed. The prefifusey c fusesx with any set of known variableprovided that, when
all the fused variables are instantiated to a fresh name, the constraigntailed. To avoid unnecessary
fusion, the set of variables is required to be minimal (see [Def. 7). T@gdhasintuition behind the two
kinds of fusions, think of names as session identifiers. Théunsec initiates a new session, while a
joinycjoins an already initiated session.

ProcesseR include the constrairt, the summatiory ., 7. of guarded processes over indexing set
I, the parallel compositioR|Q, the scope delimitatiofa)P, and the instantiated constafta), wherea
is a tuple of names/variables. When a constraistat the top-level of a process, we say iative We
use a set of defining equatiof¥s (X) = R }; with the provision that each occurrenceqfin R is guarded,
i.e. itis behind some prefix. We shall often @Se- {c;,c,...} as a process, standing foricy| - --. We
write O for the empty sum. Singleton sums are simply writtela. We use+ to merge sums as follows:
Siet Ti.R 4+ SicaT6.R = i uy T.R if INJ = 0. We stipulate that binds more tightly tham.

Free variables and names of processes are defined as usual: tlimeamhenever they occur in
a process not under a delimitation. Alpha conversion and substitutionsfined accordingly. As a
special case, we léfusexC){"/x} = (join,C){n/x} = askc{"/x}. That is, when a variabbeis instantiated
to a name, the prefixeasex c andjoin, ¢ can no longer require the fusion xfso they behave as a plain
ask c. Henceforth, we will consider processes up-to alpha-conversion.

We provide our calculus with both a reduction semantics and a labelled trarsgitimamtics. As usual
for CCP, the former explains how a process evolves withimthelecontext (so, it is not compositional),
while the latter also explains how a process interacts with the environment.

Reduction semantics. The structural equivalence relatienis the smallest equivalence between pro-
cesses satisfying the following axioms:

PO=P PQ=QP P(QR =(P|QIR P+0=P P+Q=Q+P P+(Q+R) =(P+Q)+R

@ (PIQ =P|(a)Q if agfreeP) (a)(b)P=(b)(@)Q X(&)=P{d/x} if X(X)=P
Definition 3 (Reduction) Reduction— is the smallest relation satisfying the rules in Fig. 1.

We now comment the rules for reduction. Ruke simply fires ther prefix. RuleTeLL augments the
context R) with a constraint. Similarly to [24], we do not check for the consistencycafith the other
constraints irR. If desired, a side condition similar to that of rideeck (discussed below) can be added,
at the cost reduced compositionality. As another option, one might resticbtistraint in tellc.P to a
class of coherent constraints, as done e.d.lin [1]. Ralechecks whether the context has enough active
constraint<C so to entailc. Rule cHeck checks the context for consistency with Since this requires
inspecting every active constraint in the context, a side condition presisprates the context between
C andR, so that all the active constraints arednwhich in this case acts as a gloleainstraint store

RuleFusereplaces a set of variableg with a bound name, hence fusing all the variables together.
One variable in the sex, is the one mentioned in thfesey c prefix, while the othersy, are taken from
the context. The replacement of variables is done by the substitatiorihe rule premises. The actual
set of variable§ to fuse is chosen according to thenimal fusionpolicy, formally defined below.

Definition 4 (Minimal Fusion) A fusiong = {n/z} is minimal for C, ¢, written C-M"" c, iff:

Colco A AWCZ : C{vw} - c{vw}

4 Primitives for Contract-based Synchronization

[TAu] [TELL]
(@) (t.P+Q|R) — (&) (P|R) (@) (tellcP+Q|R) — (8)(c|P|R)
Ckc C,ct/ L Rfree from active constraints
[AsK] [CHECK]
(@) (ClaskcP+Q|R) — (8)(C|P|R) (&) (C | checkc.P+Q|R) — (d) (P | R)

o= {nx} nfreshinPbQRC,c,da CHFM"c

[Fusg]
(xya) (C | fusexc.P+Q|R) — (nd) ((C|P|R)0)
C{n/x} [C{n/x} P=P-Q =0Q
[JoIN] [STRUCT]
(xnd) (C| joiny,c.P+Q|R) — (nd) ((C| P| R){n/x}) P—Q

Figure 1: The reduction relation

A minimal fusiono must cause the entailment oby the contexC. Furthermore, fusing a proper
subset of variables must not cause the entailment. The rationale for minimalit iwe¢hwvant to fuse
those variables only, which are actually involved in the entailmentofiot any arbitrary superset. Prag-
matically, we will often usduseyxC as a construct to establisessionsthe participants are then chosen
among those actually involved in the satisfaction of the constcamihd each participant “receives” the
fresh namen through the application af. In this casen would act as a sort afession identifier

Note that the contexR in rule Fuse may contain active constraints. So, the fusmns actually
required to be minimal with respect tcsabset Gof the active constraints of the whole system. Techni-
cally, this will allow us to provide a compositional semanticsfigre,c. Also, this models the fact that
processes have a “local” view of the context, as we will discuss later inghbtfg.

Rule Join replaces a variable with a namen taken from the context. Note that, unlikeseg, n is
not fresh here. To enablejain, c prefix, the substitution must causeo be entailed by the contegt
Intuitively, this prefix allows to “search” in the context for somsatisfying a constrairc. This can also
be used to join a session which was previously establishedrby=

Note that rulesuse andJoin provide a non-deterministic semantics for prefikes andjoin since
several distinct fusions could be used to derive a transition. Eacinvolves only names and variables
occurring in the process at hand, plus a fresh naimahe case ofuse . If we considemn up-to renaming,
we have a finite number of choices for Together with guarded recursion, this makes the transition
system to be finitely-branching.

Rule strucT simply allows us to consider processes up-to structural equivalence.

Transition semantics. We now present an alternative semantics, specified through a labellstitnan
relation. Unlike the reduction semantics, the labelled relafleis compositional all the prefixes can

be fired by considering the relevant portion of the system at hand. filyeegception is theheckc
prefix, which is inherently non-compositional. We deal witteck ¢ by layering the reduction relation

— over the relation®s. While defining the transition semantics, we borrow most of the intuitions from
the semantics ir_[1]. The crucial difference between the two is how theljzfinthe actions generated

by afuse (rule cLoseFuse). Roughly, in [1] we need a quite complex treatment, since there we have to
accommodate with “principals” mentioned in the constraints. Since here wetadonsider principals,

we can give a smoother treatment. We discuss in detail such issues inlSect. 5.

M. Bartoletti & R. Zunino 5

T.PS P [Tau] askc.P 2% p [AsK] tellc.P 5 C|P [TELL] checkc.P {C}i) P [CHECK]
E J
fusexC.P M P [Fusg] joiny C.P M P [JoIN] u & U [CONSTR| SiTi.R B) SiTi.R [IpLESUM]
e T / R /_F
p @ac P Q (b’ = ac P Q (b)(C'o) ~ = @c P Q (b)(C'rx0)
B [PARCONSTR| Ry [PARASK] B CLoE [PARFUSE]
PlQ()() P/‘Ql P|Q<)(<) P/|Q/ P‘Q()(xC) P/|Q/
B /1J P /
p @c P Q (b)(C'txc) = @c P Q (b)(C'7L) pLp
Bcod [PARJOIN] BeoCTL [PARCHECK] — [PARTAU]
PIQ 50, gy PlQ 2, gy PIQ = PIQ
m.P 5 P P{at &P Le PLP
————— [SuM] ———F—if X(X) =P [DEeA 5 if a¢ a [DEL] [OPEN]
5imR S P X(a) & P P (a)P (@p 2% P’
F
p A0, . p WACHO & {nxy} nfresh CH%¢c
————— if CF Cc[CLOSEASK] T [CLOSEFUSE]
P— (a)F P = (nd)(P o)
J
= (xnd) (Ctxc) P Cokco pLp = (@(CiAL) P
— | i * [CLOSEJOIN] [ToPTAU] —— if CH/ L [ToOPCHECK]
PL (maPo o={" PP P (d)P

Figure 2: The labelled transition relation. Symmetric rulesfof are omitted. The ruleear* have the
following no-capture side conditior&is fresh inb,C’, ¢,x, @', while b is fresh inC,P'.

We start by introducing in Defl]5 thactionsof our semantics, that is the set of admissible labels of
the LTS. The transition relation is then presented in Deef. 6.

Definition 5 (Actions) Actionsa are as follows, where C denotes a set of constraints.
ax=1|C|Ckc|CHc|CHc|ClKL| (aa

The actiont represents an internal move. The act®madvertises a set of active constraints. The
actionC - c is atentativeaction, generated by a process attempting to firesarc prefix. This action
carries the collectiof of the active constraints discovered so far. Similarly(ijff ¢ andfuseyc, for
C Iy c andjoin,c, as well as folC 7 | andcheckc. In the last case; includesc. The delimitation in
(a)a is for scope extrusion, as in the labelled semantics oftealculus[22]. We writd&)a to denote
a set of distinct delimitations, neglecting their order, éatp) = (ba). We simply write(ab) for (2Ub).

Definition 6 (Transition relation) The transition relations®s are the smallest relations between pro-
cesses satisfying the rules in Hig. 2. The last two rules in[Fig. 2 define thetred relation—.

Many rules in Fig[R are rather standard, so we comment on the most peamgisronly. Note in
passing that= is not used in this semantics. The rules for prefixes simply generate thesponding
tentative actions. Ruleonstradvertises an active constraint, which is then used to augment the tentative
actions through thear* rules. Ruleoren lifts a restriction to the label, allowing for scope extrusion.
The cLose* rules put the restriction back at the process level, and also convéatitenactions inta.

6 Primitives for Contract-based Synchronization

The overall idea is the following: a tentative action label carries all thefbligations needed to
fire the corresponding prefix. Thrr* rules allow for exploring the context, and augment the label with
the observed constraints. Theose* rules check that enough constraints have been collected so that the
proof obligations can be discharged, and transform the label into a

TheTor* rules act on the top-level, only, and define the semantichedk c.

The side condition of ruleLoseFuse involves a variant of the minimal fusion relation we used
previously. As for the reduction semantics, we requiréeo be minimal, so not to fuse more variables
than necessary. Recall however that in the reduction semantics minimalitgeuasad with respect to a
part of the active constraints at hand. In our labelled semantics, Pat&collect each active constraint
found in the syntax tree of the process. If we simply uSe€l'" ¢ in CLoseFusk, we would handle the
following example differently. Le€ = q(y)|q(z) Vs — p(y), letP = (X)(y)(z)(fusexp(X).P | C | s), and
let Q = (X)(y)(2)(fusexp(X).P | C) | s. In P we must collect before applyingcLoseFusg, and soo; =
{"/xy} would be the only minimal fusion. Instead@we can also applgLoseFuse before discovering,
yielding the minimal fusioro, = {n/xyz}. This would be inconsistent with (and our reduction semantics
as well). To recover this, we instead requireciroseFuse the following relation, stating thad must be
minimal with respect to a part of the observed constraints, only.

Definition 7 (Local Minimal Fusion) A fusiono = {n/z} is local minimalfor C, ¢, written CI-'%€ ¢, iff:
gc'cc : C'HMine

While we did not use structural equivalence in the definition of the labelleditran semantics, it
turns out to be a bisimulation.

Theorem 1 The relation= is a bisimulation, i.e. Q% Q = IP.PL P =Q.
We also have the expected correspondence between the reductiobelietiaemantics.
Theorem2 P+ P «— 3Q,Q.P=Q—~ Q' =F

The right implication is by rule induction. To prove the left implication, an inducaogument on
Q% @ suffices, exploiting the fact that all the constraint€Quodire accumulated in the label.

3 Examples

We illustrate our calculus by modelling scenarios where the interaction amotigsga driven by con-
tracts. In all the examples below, we use as constraints a smooth extengierpodpositional contract
logic PCL [1]. A comprehensive presentation of PCL is beyond the sebfes paper, so we give here
just a broad overview, and we refer the readelr t0[1, 2] for all thenieahdetails and further examples.
PCL is an extension of intuitionistic propositional logic IRCI[25], featurirapatractual implication
connective—. Differently from IPC, a “contractb — a impliesa not only whenb is true, like IPC
implication, but also in the case that a “compatible” contract, £-¢.b, holds. So, PCL allows for sort
of “circular” assume-guarantee reasoning, summarized by the théofem» a) A (a —b) — aAb.
The proof system of PCL extends that of IPC with the following axioms:

T—T (p—>p) —p (F—=p) = pP>aq—=0Q=>d) =P —=d)

A main result about PCL is its decidability, proved via cut elimination. Theegfare can use the
(decidable) provability relation of PCL as the entailment relatiasf the constraint structure.

M. Bartoletti & R. Zunino 7

Example 1 (Greedy handshaking)Suppose there are three kids who want to play together. Alice has
a toy airplane, Bob has a bike, while Carl has a toy car. Each of the kiddllimgvto share his toy, but
only provided that the other two kids promise they will lend their toys to himb&oye sharing their
toys, the three kids stipulate a “gentlemen’s agreement”, modelled by thevfotid®CL contracts:

Caiice(X) = (b(X) Ac(X)) = a(x) Crob(Y) = (a(y)Ac(y)) = b(y) Ccar(2) = (a(2) Ab(2)) — c(2)

Alice’s contract gjice(X) says that Alice promises to share her airplane in a session X, writtep
provided that both Bob and Carl will share their toys in the same sessiob:sBnd Carl’s contracts
are dual. The proof system &fCL allows to deduce that the three kids will indeed share their toys in
any session n, i.eagce(N) A Cgob(N) A Ccar(n) — a(n) A b(n) A c(n) is a theorem ofPCL. We model
the actual behaviour of the three kids through the following processes:

Alice = (x) (tell cajice(X)- fusexa(x).lendA) Bob= (y) (tellCgon(y). fuseyb(y).lendB)

Carl = (2) (tellccan(2). fusezc(2). lendC)
A possible trace of the LTS semantics is the following:

Alice | Bob| Carl =+ () (caiice(X) | fusexa(x).lendA) | Bob| Carl

5 (X) (caiice(X) | fusexa(x).lendA) | (y) (Caob(y) | fuseyb(y).lendB) | Carl

5 (%) (caiice(X) | fusexa(x).lendA) | (y) (Caob(y) | fuseyb(y).lendB) | (2) (ccar(2) | fuse,c(2).lendC)
L (n) (caiice(n) | lendA{n/x} | Caon(n) | ask b(n).lendB{n/y} | ccan(n) | ask c(n).lendC{r/y})

5 (n) (Catice(n) | lendA{n/x} | Caop(n) | lendB{n/y} | ccan(n) | ask c(n). lendC{n/y})

= (n) (caiice() | lendA{(m/x} | caob(n) | lendB{r/y} | ccan (n) | lendClmy})

In step one, we USEELL,ParRTAU,DEL tO fire the prefixell cajice(X). Similarly, in steps two and three, we
fire the prefixesellcgon(y) andtellccan(z). Step four is the crucial one. There, the préfigeya(X) is
fired through ruleFuse. Through rulesconsTr ParFusg, We discover the active constraingjige(x). We
use ruleorento obtain the actior{x){cajice(X)} F; a(x) for the Alice part. For the Bob part, we use rule
ConsTrto discover gop(Y), which we then merge with the empty set of constraints obtained through rule
IoLeSum; similarly for Carl. We then applyren twice and obtain(y){cson(y)} and (z){ccar(2)}. At
the top level, we applyarFuse to deduce(x, Y, z){Caiice(X), Caob(Y), Ccarl(2) } FF a(x). Finally, we apply
CLoseFusg, which fuses x, y and z by instantiating them to the fresh name n. It is easgdb ttiat
{caiice(X), Cob(Y), Ccarl(2)} H'9¢ a(x) wherea = {"/xyz}. Note that all the three kids have to cooperate,
in order to proceed. Indeed, fusing e.g. only x and y would not allow tddige the premise(e) from
the contracts gice and Gop, hence preventing arfyse prefix from being fired.

Example 2 (Insured Sale) A seller S will ship an order as long as she is either paid upfront, or she
receives an insurance from the insurance company |, which she ti¥stsnodel the seller contract as
the PCL formula $x) = order(X) A (pay(X) V insurance(X)) — ship(x) where x represents the session
where the order is placed. The seller S is a recursive process, allowilftipta orders to be shipped.

S = (X)tells(x). fusexship(X). (S| doShigx))

The insurer contract(x) = premium(X) — insurance(x) plainly states that a premium must be paid
upfront. The associated insurer process | is modelled as follows:

| = (x)telli(x).fuseyxinsurance(x). (I | T.check —pay(x).(refund$x) | debtCollectx)))

8 Primitives for Contract-based Synchronization

When the insurance is paid for, the insurer will wait for some time, modellgtdoy prefix. After that,
he will check whether the buyer has not paid the shipped goods. Inakat the insurer willimmediately
indemnify the seller, and contact a debt collector to recover the monetifeiouyer. Note that S and |
do not explicitly mention any specific buyer. As the interaction among thepas loosely specified,
many scenarios are possible. For instance, consider the following bugeB; , B>, Bs:

bo(X) = ship(x) — order(X) A pay(X) Bo = (X)tellbp(x).receiveXx)

b1(x) = ship(x) — order(X) A premium(X) B1 = (X)tellbi(X).(receivéx) | T.tell pay(X))
b2(X) = order(X) A pay(X) By, = Bo{bz/bo}
bs(X) = order(X) A premium(X) Bs = Bo{bs/by}

The buyer B pays upfront. The buyerBwill pay later, by providing the needed insurance. The
“incautious” buyer B, will pay upfront, without asking any shipping guarantees. The buyés Bsured,
and will not pay. The insurer will then refund the seller, and start a deliecting procedure. This is
an example where a violated promise can be detected so to trigger a suitddeery action. The
minimality requirement guarantees that the insurer will be involved onlynvetitually needed.

Example 3 (Automated Judge) Consider an online market, where buyers and sellers trade items. The
contract of a buyer is to pay for an item, provided that the seller promisesrid it; dually, the contract

of a seller is to send an item, provided that the buyer pays. A buyer Brgtssher contract, then waits
until discovering she has to pay, and eventually proceeds with the [wrdgiesckOut. At this point,

the buyer may either abort the transaction (process NoPay), or actpaythe item, by issuing the
constraintpaid(x). After the item has been paid, the buyer may wait for the item to besnrt(t(x)),

or possibly open a dispute with the sellel(dispute(x)). Note that, as in the real world, one can always
open a dispute, even when the other party is perfectly right.

Buyer= (x) (tell send(x) — pay(x). fusey pay(x). CheckOu}

CheckOut= 1.NoPay+ 1. tell paid(X).(T. telldispute(x) + ask sent(X))
The behaviour of the seller is dual: issue the contract, wait until she hasn, &ind then proceed with
Ship. There, either choose not to send, or send the item and then wait fjoayiment or open a dispute.

Seller= (y) (tell pay(y) — send(y). fuseysend(y). Ship
Ship= 1.NoSendt 7. tellsent(y).(T. tell dispute(y) + ask paid(y))

To automatically resolve disputes, the process Judge may enter a sessaiad between a buyer and
a seller, provided that a dispute has been opened, and either the obliggtigror send have been
inferred. This is done through thein, primitive, which binds the variable z to the name of the session
established between buyer and seller. If the obligatien(z) is found but the item has not been paid
(i.e.check —paid(z) passes), then the buyer is convicted (by jailBygemot further detailed). Similarly,
if the obligationsend(z) has not been supported by a correspondiagt(z), the seller is convicted.

Judge= (2) (join, (pay(z) A dispute(z)).check ~paid(z). jailBuyer(z) |

join, (send(z) Adispute(2)).check —sent(2). jailSeller(z))

A possible trace of the LTS semantics is the following:
Buyer| Seller| Judge® ™ (n) (send(n) — pay(n) | paid(n) | telldispute(n) | pay(n) — send(n) | NoSend | Judge
5" (n) (send(n) — pay(n) | paid(n) | dispute(n) | pay(n) — send(n) | NoSend check —sent(n).jailSeller(n) | ---)

r*

— (n) (jailSeller(n) | ---)

M. Bartoletti & R. Zunino 9

A more complex version of this example islin [1], also dealing with the identifiékeoprincipals
performing the relative promises. The simplified variant presented loerg bt require the more general
rule for fuse found in [1].

Example 4 (All-you-can-eat) Consider a restaurant offering an all-you-can-eat buffet. Custoragss
allowed to have a single trip down the buffet line, where they can pick anythaygwant. After the
meal is over, they are no longer allowed to return to the buffet. In othedsyanultiple dishes can be
consumed, but only in a single step. We model this scenario as follows:

Buffet= (x) (pasta(X) | chicken(X) | cheese(X) | fruit(x) | cake(x))

Bob= (X) fusex pasta(X) A chicken(x). SatiatedB Cark= (X) fusex pasta(X).fusey chicken(x). SatiatedC

The Buffet can interact with either Bob or Carl, and make them satiated. datdb both pasta and
chicken in a single meal, while Carl eats the same dishes but in two diffeesais nthus violating the
Buffet policy, i.e.: Buffef Carl —* SatiatedC| P. Indeed, the Buffet should forbid Carl to eat the
chicken, i.e. to fire the secoffiake,. To enforce the Buffet policy, we first define the auxiliary operator
Let(pi)ici be PCL formulae, letr be a fresh prime, o a fresh name, andz)i| fresh variables. Then:

Bici bi = (0)(2)(2)ic1 (r(0,2) | [licir(0,2) — pi)
To see how this works, consider the process pi|Q where Q fires dusex which demands a subset of
the constraintg p;)icy with J C I. To deduce pwe are forced to fusg with z (and x); otherwise we can
not satisfy the premis€o,z). Therefore all thez);c; are fused, while minimality of fusion ensures that
the (z)i\ are not. After fusion we then reach:
(©) (M) (()iena(lienar(0.z) = pi)l lliea(r(o,m)[r(0,m) — p)) |

where m is a fresh name resulting from the fusion. Note tha{ hje-|\; can no longer be deduced

through fusion, since the variable z was “consumed” by the first fusidre rdugh result is thats; p;

allows a subset of thép;)ic| to be demanded through fusion, after which the rest is no longer available.
We can now exploit the operator to redefine the Buffet as follows:

Buffet = (x)(pasta(x) @ chicken(X) & cheese(X) & fruit(X) & cake(X))

The new specification actually enforces the Buffet policy, i.e.: Buffietrl 4* SatiatedQ P. Note that
the operator® will be exploited in Seckl4, when we will encode graph rewriting in our cakulu

4 Expressive power

We now discuss the expressive power of our synchronization primitiyeshowing how to encode some
common concurrency idioms into our calculus.

Semaphores. Semaphores admit a simple encoding in our calculus. Belas/the name associated
with the semaphore, whibeis a fresh variableP(n) andV (n) denote the standard semaphore operations,
and proces® is their continuation.

P(n).Q = (x) fusexp(n,x).Q V(n).Q = (x) tellp(n,x).Q

Eachfusexp(n,X) instantiates a variable such thatp(n,x) holds. Of course, the samecannot be
instantiated twice, so it is effectively consumed. New variables are fiedibiV (n).

10 Primitives for Contract-based Synchronization

Memory cells. We model below a memory cell.

New(n,v).Q = (X)tellc(n,x) Ad(x,v).Q
Get(n,y).Q = (w)fusewc(n,w).join,d(w,y).New(n,y).Q Setn,v).Q = (w)fusexc(n,w).New(n,v).Q

The procesdNew(n,v) initializes the cell having name and initial valuev (a name). The process
Get(n,y) recoversv by fusing it withy: the procedure is destructive, hence the cell is re-created. The
processSein,v) destroys the current cell and creates a new one.

Linda. Our calculus can model a tuple space, and implement the insertion and teifigyales as in
Linda [14]. For illustration, we only considertagged pairs here.

Out(w,y).Q = (X)tell p(X) A p1(X, W) A p2(X,Y).Q IN(w,y).Q = (X)fusex p1(X, W) A p2(X,y).Q
In(wW,y).Q = (X)fusex p2(X,y).joiny, p1(X,W).Q In(w, ?).Q = (X)fusex p1(X, W).joiny p2(X,y).Q
In(w, ?).Q = (X)fusex p(X).joiny, p1(X, W).joiny p2(X,y).Q

The operatiorOut inserts a new pair in the tuple space. A fresh variadite related to the pair com-
ponents through suitable predicates. The operdtiaetrieves a pair by pattern matching. The pattern
In(w,y) mandates an exact match, so we require that both components are agdpébite thatuse

will instantiate the variable, effectively consuming the tuple. The patténiw,y) requires to match
only against they component. We do exactly that in tihese prefix. Then, we usgoin to recover the
first component of the pair, and bind it¥a The patterrin(w, ?y) is symmetric. The patterim(2w, ?y)
matches any pair, so we specify a weak requirement for the fusion.Wéegcover the pair components.

Synchronousrt-calculus. We encode the synchronomscalculus [19] into our calculus as follows:

[PIQI =[Pl [Q] [(vr)P] = (n)[P] (X(@)] = X(@) (X(¥) =Pl =X(y) = [P]
[a(b).P] = (x) (msg(x,b) | fusexin(a,x). [P]) (x fresh)
22.Q) =) (in(@y) | (2join;msg(y,2). [Q]) (yfresh)

Our encoding preserves parallel composition, and maps name restrictiam@delimitation, as one
might desire. The output cannot proceed withuntil x is fused with some. Dually, the input cannot
proceed until is instantiated to a name, that is untils fused with some& — otherwise, there is no way
to satisfymsg(y, z).

The encoding above satisfies the requirements _df [15]. dbimpositional mapping eacht con-
struct in a context of our calculus. Further, the encodingaisie invariantand preservegermination,
divergenceandsuccessFinally it is operationally correspondingince, writing— ; for reduction inrr,

P—5P = [P —"~[P]
[P —*"Q = IP.Q—"~[P|AP =P
where~ is —-bisimilarity. For instance, note that:
[(vm)(n(m).P|n(2).Q)] " (m)(0)(msg(o,m)[[P][in(n,0)|[QI{m/y}) ~ (M)[P|Q{m/}]

since the name is fresh and the constraintssg(o, m),in(n,0) do not affect the behaviour ¢1 Q. To
see this, consider the inputs and outputs occurring @ Indeed, in the encoding of inputs, theey
prefix will instantiatex to a fresh name, hence not withOn the other hand, in the encoding of outputs,

M. Bartoletti & R. Zunino 11

the join, prefix can fire only aftey has been fused witk, hence instantiated with a fresh name. The
presence ofnsg(0,m) has no impact on this firing.

Note that our encoding does not handle non-deterministic choice. Thisnieveo manageable
through the very same operatorof Ex.[4. We will also exploith below, to encode graph rewriting.

4.1 Graph rewriting

In the encoding of ther-calculus we have modelled a simple interaction pattern; namely, Milner-style
synchronization. Our calculus is also able to model more sophisticatedrsyidtion mechanisms,
such as those employed in graph rewriting technique's [21]. Before deasith the general case, we
introduce our encoding through a simple example.

Example 5 Consider the following graph rewriting rule, inspired from an examplé.in [17]

_}

Whenever the processes.A A4 are in a configuration matching the left side of the rule (where the
bullets represent shared names) a transition is enabled, leading to thiesiigh The processes change
to By ...B4, and a fresh name is shared among all of them, while the old names aatiargModelling
this kind of synchronization in, e.g., thecalculus would be cumbersome, since a discovery protocol
must be devised to allow processes to realize the transition is enabled. Motetprocess is directly
connected to the others, so this protocol is non-trivial.

Our calculus allows for an elegant, symmetric translation of the rule abokighais interpreted as
an agreement among the processes. 4. Intuitively, each process;Aromises to change into Band
to adjust the names, provided that all the others perform the analogdima&ince each #shares two
names with the other processes, we write it @n/An). The advertised contract is specified below as
a PCL formula, where we denote addition and subtraction modulo folE and 5, respectively:

ai(n,m,x) = fim1(X,m) Asig1(X,n) — fi(x,n) Asi(X, m) Q)

An intuitive interpretation of s is as follows: fi(x,n) states that n is théirst name of some process
Ai(n,—) which is about to apply the rule. Similarly fef(x,m) and theseconchame. The parameter x is
a session ID, uniquely identifying the current transition. The contrget e, x) states that Aagrees to
fire the rule provided both its neighbours do as well. The actygrédcess is as follows.

Ai(n,m) = (X)tell g (n,m, x).fusexfi (X, n) Asi(x,m). Bj(x)

Our PCL logic enables the wanted transition:=P|[; A (n;, nigm1) —* (m)|]; Bi(m).
Note that the above works even when nodesershared among multiple parallel copies of the same
processes. For instance|Pwill fire the rule twice, possibly mixing;A&omponents between the two P’s.

General Case. We now deal with the general case of a graph rewriting system.

Definition 8 An hypergraph G is a paifVs, Eg) where \4 is a set of vertices anddis a set of hyper-
edges. Each hyperedgeceeg, has an associated tag t&g) and an ordered tuple of verticésy, ..., &)
where g € Vg,. The tag tage) uniquely determines the arity k.

12 Primitives for Contract-based Synchronization

Definition 9 A graph rewriting system is a set of graph rewriting rulgS; = H;}; where G,H; are
the sourceand targethypergraphs, respectively. No rule is allowed to discard vertices, €Wy,
Without loss of generality, we require that the sets of hyperedgearg pairwise disjoint.

In Def.[10 below, we recall how to apply a rewriting rite= H to a given graph. The first step is
to identify an embedding of G insideJ. The embedding roughly map$ \ G to a “fresh extension”
of J (i.e. to the part of the graph that is created by the rewriting). Finally, Wwacep (G) with a(H).

Definition 10 Let{G; = H;}; be a graph rewriting system, and let J be a hypergraphefbeddingr
of G in J is a function such that{1) o(v) € V; for each ve Vg, ando(v) ¢ V; for each ve Vy, \ Vg, ;
(2) o(e) € E; for each ec Eg,, ando(e) ¢ E; for each ec Ey \ Eg, ; (3) o(v) = 0(V) = v=V for
eachw eVy \Vg, ; (4) o(e)=0(¢) — e=¢€ foreach e€ € Eg, UEy, ; (5)tag(e) =tag(o(e)) for
each ec Eg UEy, ; (6) o(e)nh = o(en) for each ec Eg, UE, and1 < h <Kk.

Therewriting relationJ — K holds iff, for some embeddirm we have ¥ = (V3\ 0(Vg,)) U0 (V)
and & = (E;\ 0(Eg,)) Uo(Ew;). The assumptiongdy C Vi, of Def.[9 ensuresMC Vk, so no dangling
hyperedges are created by rewriting.

We now proceed to encode graph rewriting in our calculus. To simplify nooding, we make a
mild assumption: we require eaGito be aconnectedhypergraph. Then, encoding a generic hypergraph
J is performed in a compositional way: we assign a unique natoeesach vertex itvj, and then build
a parallel composition of processfgge) (M), one for each hyperedgein E;, whereil = (ny,...,n)
identifies the adjacent vertices. Note that since the behaviour of anddgeerdepends on its tag, only,
we indexA with t =tag(e). Note that might be the tag of several hyperedges in each source hypergraph
Gi. We stress this point: tagmay occur in distinct source grap@g, and each of these may have multiple
hyperedges tagged with The proces#y must then be able to play the role of any of these hyperedges.
The willingness to play the role of such a hyperedgelatively to a single noda is modelled by a
formulapen(x, n) meaning “l agree to play the role efn sessiorx, and myh-th node isn”. The session
variablex is exploited to “group” all the constraints related to the same rewriting. We @stotmula
pPen(X,n) in the definition ofA;. The proces#y (M) promisespe1(X,N1),...,pek(X, Nk) (roughly, “I agree
to be rewritten a®”), provided that all the other hyperedges sharing a naqdagree to be rewritten
according to their roles. Formally, the contract related &< Eg, is the following:

ae(x,A) = A Peh(Xh) = /\ Pen(X nh) ()
1<h<k cEg, G =6 1<h<k

Note that in the previous example we indeed followed this schema of contioese, the hyper-
graphJ has four hyperedgesy, &, €3, &4, each with a unique tag. The formulgeands; in (1) are
rendered apeg 1 @andpg 2 in [@). Also the operator81l andH1, used in[(ll) to choose neighbours, are
generalized in((2) through the conditien= e,

Back to the general case, the procéswill advertise the contrac, for eache having tag, and then
will try to fuse variablex. Note that, since the neighbours are advertising the analogous conteazanw
not derive anypen(X,Ny) unlessall the hyperedges in the connected component agree to be rewritten.
SinceG; is connected by hypothesis, this means that we indeed require the wholhetgragree.

However, advertising the contracég using a simple parallel composition can lead to unwanted
results when non-determinism is involved. Consider two unary hypeseddech share a nodg and
can be rewritten using two distinct rule& = H with e1,e2 € Eg, andG = H with el,e2 € E5. Let
tag(el) =tag(el) =t1 andtag(e2) = tag(e2) =t2. Each process thus advertises two contracts, e.g.:

A = (X) (er(X,n) [ag(x,n) | Fusiony) Az = (X) (ae2(%,n) | ag(x,n) | Fusiony)

M. Bartoletti & R. Zunino 13

Consider nowA; | Acp. After the fusion ofx, it is crucial that both hyperedges agree on the rewriting
rule that is being applied — that is either they play the roleglo€2 or those ofl,e2. However, only
oneFusionprocess above will perform the fusion, say e.g. the first one (the nab@tow is fresh):

(m) (aer (M, n) |ag (M, n)|Rewriteq |ag (M, n) |ag(m, n)|Fusiona{m/x})

Note that the procesBusion,{m/x} can still proceed with th@ther rewriting, since the substitution
above cannot disable a prefix which was enabled before. So, wendaupewithRewritep, leading to
an inconsistent rewriting. Indeed;; was rewritten usings = H, while A;» according toG = H.

To avoid this, we resort to the constructienp; discussed in EXJ4. We can then defiyeas follows.

A =X P aex)| > fusex /\ Pen(X,nn).Be(X, 1))

tag(e)=t tag(e)=t 1<h<k

In eachA, the contracts are exposed under the. The consequences of these contracts are then
demanded by a sum @dsex. We defer the definition oBe.

Consider now the behaviour of the encoding of a whole hypergragh| - - - |Av (7). If the hyper-
graphJ contains an occurrence &, whereG = H is a rewriting rule, each of the processes involved
in the occurrencé®,...,R may fire afusey prefix. Note that this prefix deman@sactly onecontract
a. from each process inside of the occurrenc&ofThis is because, by construction, eaghunder the
same® involves distincipen. This implies that, whenever a fusion is performed, the contracts which are
not directly involved in the handshaking, but are present in the ocueerefG triggering the rewriting,
are then effectively disabled. In other words, after a fusion the sums iottter involved processes have
exactly one enabled branch, and so they are now committed to apply the rgwdtiarently.

After the fusionBe(x, 1) is reached, wherehas been instantiated with a fresh session namich
is common to all the participants to the rewriting. It is then easy to exploit this marereconfig-
ure the graph. Each involved vertex (say, with namean be exposed to all the participants through
e.g.tellvertn(m,n), and retrieved through the correspondjogy vertn(m,y). Sincemis fresh, there is
no risk of interference between parallel rewritings. New vertices (thosg \ V) can be spawned and
broadcast in a similar fashion. Once all the names are shared, the tapgegtaphH is formed by
spawning its hyperedgds, through a simple parallel composition Af(A) processes — each one with
the relevant names. Note that the proceggsewheret ranges over all the tags, are mutually recursive.

Correctness. Whenever we have a rewritin— K, it is simple to check that the contracts used in
the encoding yield an handshaking, so causing the correspondinigitrag our process calculus. The
reader might wonder whether the opposite also holds, hence establistipgrational correspondence
It turns out that our encoding actually allowsrerewritings to take place, with respect to Oef] 10. Using
the Ay from Ex.[8, we have that the following loop of length 8 can perform a ttiams

P = A1(n1,n2)|A2(n2,n3) |Az(N3, Na) |Ag(Na, N5) |A1(Ns, Ne) |A2(Ne, N7) |[Az(N7, g) |Ag(Ng, Ny)

Indeed, any edge here has exactly the same “local view” of the grapteasrresponding of the
rewriting rule. So, an handshaking takes place. Roughly, if a gigislygers a rewriting in the encoding,
then each “bisimilar” graph; will trigger the same rewriting.

A possible solution to capture graph rewriting in an exact way would be to nmealivhe vertices
in each contract. That is, edge would usepa, (n1,N2,X,y), while edgeA; would usepa, (W, nz, Nz, 2),
and so on, using fresh variables for each locally-unknown noden, Mrewould need théuse prefix to
match these variables as well, hence precisely establishing the embeddfrigef.[10. The semantics
of fuse introduced in [[1] allows for such treatment.

14 Primitives for Contract-based Synchronization

5 Discussion

We have investigated primitives for contract-based interaction. Such pesigixtend those of Concur-
rent Constraints, by allowing a multi-party mechanism for the fusion of viesalwhich well suites to
model contract agreements. We have shown our calculus expreesivgheto model a variety of typi-
cal contracting scenarios. To do that, we have also exploited our ptiopas contract logic PCL [1]
to deduce the duties inferred from a set of contracts. Finally, we haseded into our calculus some
common idioms for concurrency, among which tirealculus and graph rewriting.

Compared to the calculus inl[1], the current one features a differémtfau managing the fusion
of variables. In[[1], the prefiXuseyc picks from the context a set of variablgglike ours) and a set
of namesm (unlike ours). Then, the (minimal) fusiam causes the variables ¥y to be replaced with
names imm, wheren is fresh, andr(x) = n. The motivation underneath this complex fusion mechanism
is that, to establish a session in [1], we need to instantiate the variableiEh represent the identities
of the principals involved in the handshaking. Similajbynycis allowed to instantiate a set of variables
X. Instead, in this paper, to present our expressivity results we hagecla simplified version of the
calculus, wheréusey c considers a single name, ajuih, c a single variable. At the time of writing, we
do not know whether the simplified calculus presented here is as exgressihe calculus of[1]. The
contract-related examples shown in this paper did not require the moristicgtied rules fofuse, nor
did the encodings of most of the concurrency idioms. As a main exceptiowaneunable to perfectly
encode graph rewriting in our simplified calculus; the difficulty there wasdhdistinguishing between
bisimilar graphs. We conjecture that the more general fusioflof [1] isetetml make the encoding
perfect; proving this would show our simplified calculus strictly less expreslsan the one ir 1].

In our model of contracts we have abstracted from most of the implementatigsisFor instance, in
insecure environments populated by attackers, the operation of exeparogtracts requires particular
care. Clearly, integrity of contracts is a main concern, so we expectulttabe mechanisms have to be
applied to ensure that contracts are not tampered with. Further, estadplishagreement between par-
ticipants in a distributed system with unreliable communications appears similarltissstegcommon
knowledgeamong the stipulating partiels [16], so an implementation has to cope with the rekated.is
For instance, théusey prefix requires a fresh name to be delivered among all the contractitiggao
the implementation must ensure everyone agrees on that name. Also, it is imploatgparticipants can
be coerced to respect their contracts after the stipulation: to this aim, the impédimershould at least
ensure the non repudiation of contracts [26].

Negotiation and service-level agreement are dealt with in [8, &|aulus combining features
from concurrent constraints and name passing; [7] adds rules falihg transactions. As in the-
calculus, synchronization is channel-based: it only happens betweeprtwesses sharing a name.
Synchronization fuses two names, similarly to the fusion calculus and ourgiAdifference between
cc-pi and our calculus is that in cc-pi only two parties may simultaneousthraa agreement, while
our fuse allows for simultaneous multi-party agreements. Also, in our calculus the panigsed in
an agreement do not have to share a pre-agreed name. This is vsefiddelling scenarios where a
contract can be accepted by any party meeting the required terms (sez.E8y.

In [12] contracts are CCS-like processes. A client contract is complidinta service contract if any
possible interaction between the client and the service will always sudoeedll the expected synchro-
nizations will take place. This is rather different from what we expewtfa calculus for contracts. For
instance, consider a simple buyer-seller scenario. In our vision, it is tando provide the buyer with
the guarantee that, after the payment has been made, then either the pagischige made available,
or a refund is issued. Also, we want to assure the seller that a buyeravilepudiate a completed

M. Bartoletti & R. Zunino 15

transaction. We can model this by the following contracts in PBlyer= (ship \/ refund) — pay, and
Seller= pay — (ship Vrefund). Such contracts lead to an agreement. The contractsof [12] would have a
rather different form, e.gBuyer= pay. (ship + refund) andSeller= pay. (ship @ refund), where+ and®
stand respectively for external and internal choice. This models the oligputting a payment, and then
either receiving the item or a refund (at service discretion). Dually,ehéce will first input a payment,
and then opt for shipping the item or issuing a refund. This is quite distamt éur notion of contracts.
Our contracts could be seen as a declarative underspecified descaptitich behavioural contracts
are an implementation. Behavioural contracts seem more rigid than ourgyagrétisely fix the or-
der in which the actions must be performed. Even though in some cases thisend@girable, many
real-world contracts allow for a more liberal way of constraining the inwbiparties (e.g., “l will pay
before the deadline”). While the crucial notion in [12kismpatibility(which results in a yes/no output),
we focus on the inferring thebligationsthat arise from a set of contracts. This provides a fine-grained
guantification of the reached agreement, e.g. we may identify who is reébf@ofa contract violation.

Our calculus could be exploited to enhance the compensation mechanisngwtitoring transac-
tions [4,[5/10]. There, a transaction is partitioned into a sequence of sroadéle, each one associated
with a compensationto be run upon failures of the standard execution. While in long-runnarsérc-
tions clients have little control on the compensations (specified by the designeur approach clients
can use contracts to select those services offering the desired catipens

An interesting line for future work is that of comparing the expressiveié®ur calculus against
other general synchronization models. Our synchronization mechanasad on the local minimal
fusion policy and PCL contracts, seems to share some similarities with the epidtion algebras
with mobility [18]. Indeed, in many cases, it seems to be possible to achievegrtblersnization defined
by a SAM through some handshaking in our model. We expect that a nurhBais can be encoded
through suitable PCL contracts, without changing the entailment relationllyDwa expect that the
interactions deriving from a set of contracts could often be specifiedighra SAM.

Another general model for synchronization is the BIP model [3]. Hemmplex coordination
schemes can be defined through an algebra of connectors. While stines@tchemes could be mod-
elled by contracts, encoding BIP priorities into our framework seems to twe hctually, the only
apparent link between priorities and our calculus is the minimality requiremensans. However, our
mechanism appears to be less general. For instance, BIP allows maxigragsras its priority relation,
which contrasts with the minimality of our fusions.

Acknowledgments. Work partially supported by MIUR Project SOFT, and Autonomous Region o
Sardinia Project TESLA.

References

[1] Massimo Bartoletti and Roberto Zunino. A calculus of tawsting processes. To appear in LICS 2010.

[2] Massimo Bartoletti and Roberto Zunino. A logic for cadts. Technical Report DISI-09-034, DISI -
Universita di Trento, 2009.

[3] Simon Bliudze and Joseph Sifakis. The algebra of commsetstructuring interaction in BIREEE Trans-
actions on Computer$7(10), 2008.

[4] Laura Bocchi, Cosimo Laneve, and Gianluigi Zavattarocaiculus for long running transactions. Pmoc.
FMOODS 2003.

16

[5]
[6]

[7]
(8]

(9]
[10]

[11]
[12]

[13]
[14]

[15]
[16]
[17]
(18]
[19]

[20]
[21]

[22]

(23]
[24]

[25]
[26]

Primitives for Contract-based Synchronization

Roberto Bruni, Heran C. Melgratti, and Ugo Montanari. Theoretical foundasiéor compensations in flow
composition languages. FProc. POPL, 2005.

Roberto Bruni and Ugo Montanari. Models for open tratigars (extended abstract). Technical Report
RR-385, Department of Informatics, University of Oslo, 200

Maria Grazia Buscemi and Hefin C. Melgratti. Transactional service level agreemenBric. TGG 2007.

Maria Grazia Buscemi and Ugo Montanari. CC-Pi: A conisttrdbased language for specifying service level
agreements. IRroc. ESOR2007.

Maria Grazia Buscemi and Ugo Montanari. Open bisimolafior the Concurrent Constraint Pi-Calculus. In
Proc. ESOR2008.

Michael J. Butler, C. A. R. Hoare, and Carla Ferreira.réce semantics for long-running transactions. In
Communicating Sequential Processes: The First 25 Yead4.

Samuele Carpineti and Cosimo Laneve. A basic conteangfuage for web services. Rroc. ESOR2006.

Giuseppe Castagna, Nils Gesbert, and Luca Padovartiedry of contracts for web serviceBCM Trans-
actions on Programming Languages and Sysie3hé5), 2009.

Giuseppe Castagna and Luca Padovani. Contracts follermbcesses. IRroc. CONCUR2009.

David Gelernter. Generative communication in LindéCM Transactions on Programming Languages and
Systems7(1), 1985.

Daniele Gorla. Towards a unified approach to encodglzitid separation results for process calculiPiac.
CONCUR 2008.

Joseph Y. Halpern and Yoram Moses. Knowledge and conmknowledge in a distributed environmenk.
ACM, 37(3), 1990.

Ivan Lanese and Ugo Montanari. Mapping fusion and symaized hyperedge replacement into logic pro-
gramming.Theory and Practice of Logic Programming(1-2), 2007.

Ivan Lanese and Emilio Tuosto. Synchronized hyperaggéacement for heterogeneous systemsCO
ORDINATION 2005.

Robin Milner, Joachim Parrow, and David Walker. A Calmuof Mobile Processes, | and lInformation
and Computation100(1), 1992.

Luca Padovani. Contract-based discovery and adaptafiweb services. IRroc. SFM 2009.

Grzegorz Rozenberg, editdlandbook of graph grammars and computing by graph transétion: volume
I. foundations World Scientific Publishing Co., Inc., 1997.

Davide Sangiorgi and David WalkeTher-calculus: A Theory of Mobile ProcesseSambridge University
Press, 2001.

Vijay SaraswatConcurrent Constraint ProgrammindMIT Press, 1993.

Vijay Saraswat, Prakash Panangaden, and Martin Rin&emantic foundations of concurrent constraint
programming. IrProc. POPL, 1991.

Anne Troelstra and Dirk van Dalei@onstructivism in Mathematics, vol. North-Holland, 1988.
Jianying Zhou.Non-repudiation in Electronic CommercArtech House, 2001.

	Introduction
	A contract calculus
	Examples
	Expressive power
	Graph rewriting

	Discussion

