
Models of Circular Causality?

Massimo Bartoletti1, Tiziana Cimoli1, G. Michele Pinna1, and Roberto Zunino2

1 Dipartimento di Matematica e Informatica, Università di Cagliari, Cagliari, Italy
2 Dipartimento di Matematica, Università degli Studi di Trento, Italy

Abstract. Causality is often interpreted as establishing dependencies
between events. The standard view is that an event b causally depends
on an event a if, whenever b occurs, then a has already occurred. If the
occurrences of a and b mutually depend on each other, i.e. a depends on
b and vice versa, then (under the standard notion of causality) neither
of them can ever occur. This does not faithfully capture systems where,
for instance, an agent promises to do event a provided that b will be
eventually done, and vice versa. In this case, the circularity between the
causal dependencies should allow both a and b to occur, in any order.
In this paper we review three models for circular causality, one based
on logic (declarative), one based on event structures (semantical), and
one based on Petri nets (operational). We will cast them in a coherent
picture pointing out their relationships.

1 Motivations

Circular dependencies are a natural aspect of many kinds of interactions. For
instance, consider two mutually distrusting participants, Alice and Bob, who
want to exchange their resources. Alice wants Bob’s resource, and vice versa,
but only one resource at a time can be transferred. A possible interaction is that
where Alice makes the first move, by giving her resource to Bob. At this point,
Bob can either give his resource to Alice, or he may even choose not to. Since
Alice and Bob do not trust each other, each one is expecting that the other
gives their resource first. The two participants are stuck in a situation where no
one can move. This is a classical issue, discussed by philosophers at least since
Hobbes’ Leviathan [14].

The above scenario expresses the basic idea behind circular causality : Alice
wants to do her action after Bob’s action has happened, and vice versa. This
situation can be represented in many ways in many models.

From a logical point of view, we may say that “Alice gives her resource to
Bob” and “Bob gives his resource to Alice” are two atomic propositions a and
b, and we can model the behaviour of Alice and Bob with the formulae:

b→ a a→ b (1)

where → denotes e.g. intuitionistic implication [17].

?
Work partially supported by Aut. Reg. Sardinia LR 7/07 CRP-17285 (TRICS), PIA 2010 “Social
Glue”, by MIUR PRIN 2010-11 “Security Horizons”, and by EU COST Action IC1201 (BETTY).

2 M. Bartoletti ed al.

From a semantical point of view, a and b can be considered events of an
event structure [22], which is one of the classical models of concurrent systems.
In event structures, causality among events is represented by enablings of the
form X ` e, meaning that the event e can only occur after all the events in the
set X have already occurred. Then, our Alice-Bob scenario can be modelled by
an event structure with the following enablings:

{b} ` a {a} ` b (2)

Finally, in a more operational perspective, a and b can be seen as transitions
of the following Petri net N [19]:

p1 p2

b
1

11

a
1

1 1

We can now notice that all the above formalisations of the Alice-Bob scenario
share some kind of misfeature: neither the atom a nor the atom b can be deduced
in the logical theory in (1); neither the events a nor b can ever happen (i.e. they
are not reachable) in the event structure in (2); and neither transitions a or b
can be fired in the net N .

To solve the impasse, one of the participants must do the first move. Alice
may decide to give her resource to Bob, without conditions, hoping for his in
exchange. This adjustment clearly resolves the circularity issue (since one of the
dependencies is removed). From the logical point of view, the modified scenario
can be described by the theory:

a a→ b (3)

where both a and b are deducible. From the semantic point of view, we obtain
an event structure with the following enablings:

∅ ` a {a} ` b (4)

where both a and b are reachable. Finally, the Petri net is adjusted as follows
(we name the resulting net N ′):

p1 p2

b
1

11

a
1

1

Models of Circular Causality 3

where both transitions a and b can be performed.

However, this new scenario has a flaw: we have lost the information that Alice
is willing to trade her resource only if she receives what she wants in exchange.
Consider for instance that Bob wants to give his resource to Carl, first, and
that Carl needs that resource forever. Assume also that this information is not
shared with Alice. Since Alice is saying that she will give her resource without
conditions, she gives away her resource, but she will receive nothing. If we model
this situation in our three settings, in the logic we have a and a → c (Carl’s
request), from which we deduce a but not b. In the event structure we have
enablings ∅ ` a and a ` c, and so a is reachable while b is not. In the Petri net,
we just replace transition b in N ′ with a new transition c, and we have that the
transition a is fired while b is not. Never has Alice got what she wants, but she
always has to do something. We would like to express Alice’s constraints in such
a way that, if Bob is not promising to give her what she wants, then she is not
obliged to do anything.

Our answer to this problem is the introduction of a novel kind of circular
dependency of the form “Alice gives her resource to Bob” on the promise that
“Bob will eventually gives his to Alice”. Alice may give away her resource now,
but only if Bob promises to give her his one. In the logical approach, this is
done in [11] by extending Intuitionistic Propositional Logic with a new kind of
implication (�); event structures are extended in [7] with a new kind of enabling
(
); Petri nets are extended with the possibility of lending tokens [4]. Thus, let
us consider again our Alice-Bob example. In the logic, we have:

b� a a→ b (5)

and due to the reduction rules for �, now both a and b are deducible.
In event structures, we have:

b
 a a ` b (6)

and since
 decouples causality from the order in which events happens, both a
and b are reachable.

In Petri nets, we add an arc from p1 to a labelled in such a way that it means
that a token may be lent from p1:

p1 p2

b
1

11

a
1

(0,1) 1

Since transition a can lend a token, the firing sequence p1
a−→ p2

b−→ p1 is now
possible.

4 M. Bartoletti ed al.

Consider again the situation where Bob and Carl are trying to deceive Alice.
Were we to match Alice’s condition with Bob’s c, we would end with a satisfac-
tory situation: in the logic, b � a and c do not imply a; in the event structure
with enablings b
 a and c, event a is not reachable; in Petri nets, an “honored”
marking is not reachable.

This paper is organized as follows: Sections 2 to 4 gently introduce the three
models considered in this paper: the logic PCL, lending Petri nets, and event
structures with circular causality. For each of these models, we will give some
examples to stress the flavor of these approaches. Section 5 contains some of
the results connecting these three models. Finally, in Section 6 we draw some
conclusions.

2 A logical approach to circular causality

Propositional Contract Logic (PCL [11]) extends intuitionistic propositional
logic (IPC) with the connective �, called contractual implication.

Definition 1 (PCL syntax). The formulae A,B, . . . of PCL are defined as
follows, where we assume that a, b, . . . range over a given set of atoms.

A,B ::= ⊥ | > | a | ¬A | A ∨B | A ∧B | A → B | A � B

The natural deduction system for PCL [3] extends that for IPC with the rules
(�I1), (�I2), and (�E) in Figure 1 (wherein, in all the rules, ∆ is a set of PCL
formulae). Provable formulae are contractually implied, according to rule (�I1).
Rule (�I2) provides � with the same weakening properties of intuitionistic im-
plication →. The paradigmatic rule is (�E), which allows for the elimination of
contractual implication �. Compared to the rule (→E) for elimination of → in
IPC, the only difference is that in the context used to deduce the antecedent A,
rule (�E) also allows for using as hypothesis the consequence B.

(Id)

∆,A ` A
∆ ` A ∆ ` B

(∧I)

∆ ` A ∧B
∆ ` A ∧B

(∧E1)

∆ ` A
∆ ` A ∧B

(∧E2)

∆ ` B

∆ ` A
(∨I1)

∆ ` A ∨B
∆ ` B

(∨I2)

∆ ` A ∨B
∆ ` A ∨B ∆,A ` r ∆,B ` r

(∨E)

∆ ` r

∆,A ` B
(→I)

∆ ` A → B

∆ ` A → B ∆ ` A
(→E)

∆ ` B

∆ ` B
(�I1)

∆ ` A � B

∆ ` A � B ∆,B ` A
(�E)

∆ ` B

∆ ` A � B
∆,A′ ` A
∆,B ` A′ � B′

(�I2)

∆ ` A′ � B′

Fig. 1. Natural deduction system for PCL (rules for ¬ and ⊥ omitted).

Models of Circular Causality 5

Example 1. Let ∆ = A → B,B � A. A proof of ∆ ` A in natural deduction is:

∆ ` B � A

∆,A ` A → B ∆,A ` A
(Id)

∆,A ` B
(→E)

∆ ` A
(�E)

As in the previous example, we can show that the following is a theorem of PCL:

(A � B) ∧ (B � A) → A ∧ B (THEOREM)

whereas the following is not a theorem (neither of PCL nor of IPC):

(A → B) ∧ (B → A) → A ∧ B (NOT A THEOREM)

The above theorem highlights the different nature of contractual and intuition-
istic implication: the former allows for a form of circular reasoning, while the
latter does not. Some other characterizing theorems of PCL are outlined below:

` (A� B) ∧ (B � A) → A ∧B (7)

` (A1 � A2) ∧ · · · ∧ (An−1 � An) ∧ (An � A1) → A1 ∧ · · · ∧An (8)

`
∧

i∈1..n
(
(A1 ∧ · · · ∧Ai−1 ∧Ai+1 ∧ · · · ∧An)� Ai

)
→ A1 ∧ · · · ∧An (9)

` (A� B)→ (A→ B) (10)

6` (A→ B)→ (A� B) (11)

` (A′ → A) ∧ (A� B) ∧ (B → B′) → (A′ � B′) (12)

Theorem (7) models a binary handshaking ; (8) is a generalization to the
multi-party case, where the (i + 1)-th party, in order to do Ai+1, relies on an
action Ai made by the i-th party; (9) is a sort of “greedy” handshaking, because
now a party does Ai only provided that all the other parties do their actions,
i.e. A1, . . . , Ai−1, Ai+1, . . . , An. Theorem (10) states that contractual implication
is stronger than intuitionistic implication, while (11) says that the converse
does not hold. The consequence in a contractual implication can be arbitrarily
weakened, while the precondition can be arbitrarily strengthened (12).

The main results about PCL, among which consistency (under the full set
of rules, which also deal with negation and ⊥) and decidability, are established
in [11]. The proof of decidability follows the lines of the one for IPC given by
Kleene in [15]. The result relies on a formulation of the PCL sequent calculus with
implicit structural rules (to limit the proof search space of a given sequent, as
in Kleene’s G3 calculus) and the subformula property, obtained as consequence
of the cut-elimination theorem.

While PCL is clearly a conservative extension of IPC, there cannot be sound
and complete homomorphic encodings of PCL into IPC: that is, � cannot be
regarded as syntactic sugar for some IPC context.

Definition 2 (Homomorphic encoding). A homomorphic encoding m is a
function from PCL formulae to IPC formulae such that: m is the identity on

6 M. Bartoletti ed al.

prime formulas, >, and ⊥; it acts homomorphically on ∧,∨,→,¬; it satisfies
m(A� B) = C[m(A),m(B)] for some fixed IPC context C(•, •).

Of course, each homomorphic encoding is uniquely determined by the context C.
Several complete encodings, (i.e. satisfying ` p =⇒ `IPC mi(p)) exist: for
instance,m0(A� B) = m0(B) andm1(A� B) = (m1(B)→ m1(A))→ m1(B)
are both complete encodings. However, there can be no sound encodings. Indeed,
a sound encoding would allow us to derive Peirce’s axiom in PCL, violating the
fact that PCL conservatively extends IPC [10].

Theorem 1. If m is a homomorphic encoding of PCL into IPC, then m is not
sound, i.e. there exists a PCL formula A such that `IPC m(A) and 6` A.

3 An operational approach to circular causality

In Petri nets [19] dependencies among transitions are encoded by stipulating
that tokens produced by a transition are consumed by others, and it may well
be that two or more transitions may share places in such a way that tokens
produced by one are used by the others and vice versa. Thus, on an abstract
level, the issue of circularity is already present in the general Petri nets setting,
and circularity is not considered a relevant issue. This is not longer true when
considering nets where transitions represent events and the requirement that a
transition is executed just once is enforced, e.g. occurrence nets (adopting the
terminology of van Glabbeek and Plotkin in [21]). In this case to establish a cir-
cular dependency a transition should use a token produced by another transition
which in turn expects (one of) the token produced by the former. According to
the ordinary interpretation of firing in Petri nets these transitions cannot fire.

To overcome this problem debit arcs have been introduced in [20]. In a net
with debit arcs transitions may be executed even if some tokens are not avail-
able. The motivations behind this approach rely on language theoretic consid-
erations (Petri nets are indeed a kind of automata able to recognise a class of
languages [23]): nets with debit arcs are inspired by the so called blind-one way
multicounter machines described by Greibach in [13].

We are more interested in characterising in an operational way the capability
of a place to lend tokens allowing in this way the execution of a transition
otherwise blocked. To this aim we present Lending Petri nets, defined in [4]
and further studied in [5], which are basically debit nets with some additional
constraints. A Petri net is a tuple 〈S, T, F,m0〉, where S is a set of places, T is
a set of transitions (such that that S ∩ T = ∅), F : (S × T) ∪ (T × S) → N is a
weight function, and m0 : S → N is a function from places to natural numbers,
called marking, which models the initial state of the net. F (s, t) = n means that
the transition t can be fired whenever n tokens are available at place s, while
F (t, s′) = m means that firing the transition t will result in m tokens added
to place s′. Lending Petri nets extend standard nets by allowing transitions
to fire even in the absence of the required number of tokens. However, this is
done in a controlled manner: only a fixed number of tokens can be obtained “on

Models of Circular Causality 7

credit”, and credits must be eventually honored. We introduce a lending function
L : S × T → N, which specifies how many tokens a transition may borrow from
a place. Thus if F (s, t) = n and L(s, t) = l, then firing the transition t costs
n+ l tokens, of which only l can be taken on credit. We equip Lending Petri nets
with a labelling ` of places and transitions, where labels are drawn from a set L.
These labels have a role similar to the one played by input/output interfaces in
the open nets as defined in [1], and play a major role when defining operations
on these nets.

Definition 3. A lending Petri net (LPN) is a tuple N = 〈S, T, F,L, `,m0〉
where: (a) 〈S, T, F,m0〉 is a Petri net, (b) L : S×T → N is the lending function,
and (c) ` : S ∪T ⇀ L is a partial labeling of places and transitions, Further, we
require that for each t ∈ T , there exists some s ∈ S such that F (s, t)+L(s, t) > 0.

The last requirement says simply that no transition can happen spontaneously
but must consume or lend some tokens.

This model is clearly a conservative extension of the classical one: indeed,
an ordinary Petri net is an LPN where the lending function is constant and
equal to 0, which means that no token can be borrowed from any place. The
drawing conventions we adopt are mostly standard, the unique difference is for
arcs connecting places to transitions we have a pair of natural numbers, the first
representing the weight of the standard arcs (possibly 0) and the second the
weight of the lending ones (in red, only written when nonzero). We omit the arc
between a place and a transition if standard and lending arcs have null weights.

We define the pre-set and the post-set of a transition/place as usual: •x =
{y ∈ T ∪ S | F (y, x) > 0} and x• = {y ∈ T ∪ S | F (x, y) > 0}, respectively.
These are lifted to sets of transitions/places in the obvious way. The current
state of a net is described by a marking, which in the case of LPNs is no longer
constrained to be a function from places to natural numbers, but it is a function
m : S → Z from places to integers (with the exception of the initial marking m0

that must be non-negative). We shall adopt the following drawing convention for
markings. First, we associate each place p with a co-place p, which represents a
negative token in p. Then, a marking m is represented as a multiset of places
and co-places, contanining m(p) occurrences of p if m(p) is positive, and −m(p)
occurrences of p is m(p) is negative. For instance, we represent the marking
m = {p1 7→ 2, p2 7→ −1} as p1, p1, p2. We denote with ∅ the empty multiset.

The behavior of a net is described by a labeled relation between markings,
where labels are transitions in T . Intuitively, a transition t can be fired at a
certain marking whenever each place in the pre-set of t contains enough tokens:
more precisely, each place s ∈ •t must contain at least F (s, t) tokens. If a
transition t is enabled at a marking m then it can be fired, leading to a new
marking where the number of tokens in the places of the net is accordingly
updated. To do that, each place s in the pre-set of t gives away F (s, t) + L(s, t)
tokens (of which, only F (s, t) need to be already available at s, while the others
can be taken on credit), and it receives F (t, s) tokens.

8 M. Bartoletti ed al.

p1

p2

p3

p4

p0

t1
1 (0,1)

(0,1)1

t2

1

1

1

t3

1

1

p1 p2

t2
11

t3

13

t1

(1,2) 1

N1 N2

Fig. 2. Two Lending Petri nets.

Definition 4. Let N = 〈S, T, F,L, `,m0〉 be an LPN. We say that t ∈ T is
enabled at m iff m(s) ≥ F (s, t) for all s ∈ •t. We have a step t from m

to m′ (in symbols, m
t−→ m′) whenever t is enabled at m, and, for all s ∈ S:

m′(s) = m(s)−
(
F (s, t) + L(s, t)

)
+ F (t, s)

A consequence of this notion is that the number of tokens in a place can become
negative, if the weight of the lending arc is not zero.

A firing sequence is a finite sequence of steps. The trace of a firing se-
quence is the string of labels associated to its transitions, i.e. the trace of

m0
t1−→ m1 · · ·mn−1

tn−→ mn is the string `(t1) · · · `(tn), which is the empty string
ε when n = 0, and it is undefined when `(ti) is undefined for some i. The set of
all traces of a net N is denoted with Tr(N). As usual, we denote with −→∗ the
reflexive and transitive closure of −→. Hereafter, we denote with Mk(N) the set
of reachable markings of a net N , i.e. those markings m for which there exists a
firing sequence starting at m0 and leading to m.

Not all reachable markings represent good states of a system: a marking
where some places have a negative number of tokens models a state where some
resources have been taken on credit, but the credit has not been honored yet.
Honored markings are those markings which model states where all credits have
been honored. Thus in honoured markings the possible circular dependencies
among transitions have been solved.

Definition 5. A marking m of N is honored iff m(s) ≥ 0 for all places s of N .

If the net has no lending arcs, all the reachable markings are honored. An honored
firing sequence is a firing sequence where the final marking is honored.

Example 2. Consider the LPN N1 in Figure 2. The initial marking is the multiset
p0. The transition t1 is enabled at p0 as it may borrow tokens from places p2
and p4. The other two transitions (t2 and t3) are not enabled. We have exactly

one maximal firing sequence: p0
t1−→ p1, p2, p4

t2−→ p2, p3
t3−→ ∅. Note that

the marking reached after firing all the three transitions is a non-negative one,
hence it is honored.

Models of Circular Causality 9

Consider now the LPN N2 in Figure 2. The transition t1 is enabled, as it may
borrow two tokens from place p1. Firing t1 leads to the marking p1, p1, p2. Then,
if the transition t2 is fired, one token is given back to place p1, and we reach a
deadlock, i.e. a not honored state where no transitions are enabled. Instead, if
the transition t3 is fired then we return to the initial state, with one token at
place p1.

LPNs are intended to represent systems, hence a notion of composition should
be introduced. The idea is that labelled places are the interface of the LPN.
Those without outgoing transitions play the role of outputs, whereas those in-
coming transitions play the role of inputs. If a net N has an input place, and N ′

has an output place with the same label, then in their composition N ⊕N ′ these
places will be plugged together. This models an asynchronous communication
channel between nets, which does not preserve the order of messages (as usual in
nets, see e.g. [1]). A transition with a certain label of a component is supposed
to produce tokens in all the interface places of the other component, that have
the same label.

The composition of LPNs we introduce is subject to some conditions, which
altogether take the name of correct labeling, and are collected in Definition 6.
The transitions of each components are labeled with actions, and the tokens
produced by these transitions may carry this information. When these tokens
are produced in labeled places, we require that this information is preserved
(this is the requirement (a) of Definition 6). Accordingly to the same intuition,
all the labeled places in the post-set of a transition should carry the same label
(requirement (b) of Definition 6). Finally, input/output places are not initially
marked (requirement (c)). This is because we want have input/output places as
the communication medium among the components.

Definition 6. A LPN 〈S, T, F,L, `,m0〉 is correctly labeled iff for all s ∈ S
such that `(s) 6= ⊥: (a) ∀t, t′ ∈ •s. `(t) = `(s) = `(t′) (b) ∀t ∈ •s. |{`(s′) |
s′ ∈ t• ∧ `(s′) 6= ⊥}| = 1, and (c) m0(s) = 0.

The underlying idea of LPN composition is rather simple: input and output
places with the same label are merged together and the flow relation is defined
accordingly. Formally, the output places s in N with a label occurring in N ′ are
removed, and the ingoing transitions of s are connected to the input places in
N ′ with label `(s). Furthermore, if a component has a transition t with the same
label of a place s of the other component, then a flow arc is created from the
transition to the place. We require that arcs connecting a labeled transition to
a labeled place have always weight 1. All the other ingredients of the composed
net are inherited from the components.

Definition 7. Let N = 〈S, T, F,L, `,m0〉 and N ′ = 〈S′, T ′, F ′,L′, `′,m′0〉 be two
correctly labeled LPNs. We say that N,N ′ are composable whenever (a) S∩S′ =
∅ = T ∩ T ′, and (b) ∀t ∈ T, ∀s ∈ S. `(s) 6= ⊥ =⇒ F (t, s) ≤ 1 and
∀t ∈ T ′, ∀s ∈ S′. `′(s) 6= ⊥ =⇒ F ′(t, s) ≤ 1 and in such case their

composition N ⊕N ′ is the LPN 〈Ŝ, T ∪ T ′, F̂ , L̂, ˆ̀, m̂0〉 in Figure 3.

10 M. Bartoletti ed al.

Ŝ = (S \ S) ∪ (S′ \ S′)

where S = {s ∈ S | `(s) ∈ `′(S′) and s• = ∅}
and S′ = {s′ ∈ S′ | `′(s′) ∈ `(S) and s′• = ∅}

F̂ (s, t) =

{
F (s, t) if s ∈ S and t ∈ T
F ′(s, t) if s ∈ S′ and t ∈ T ′

F̂ (t, s) =



F (t, s) if s ∈ S and t ∈ T
F ′(t, s) if s ∈ S′ and t ∈ T ′

F (t, s′) if s ∈ S′ and s′ ∈ S and t ∈ T and `(t) = `′(s)

F ′(t, s′) if s ∈ S′ and s′ ∈ S′ and t ∈ T ′ and `′(t) = `(s)

1 if t ∈ T and s ∈ S′ and `(t) = `′(s)

1 if t ∈ T ′ and s ∈ S and `′(t) = `(s)

L̂(s, t) =

{
L(s, t) if s ∈ S and t ∈ T
L′(s, t) if s ∈ S′ and t ∈ T ′

ˆ̀(x) =

{
`(x) if x ∈ S ∪ T
`′(x) otherwise

m̂0(ŝ) =

{
1 if s ∈ S and m0(s) = 1, or s ∈ S′ and m′0(s) = 1

0 otherwise

Fig. 3. Composition of two LPNs.

Observe that composing two nets N and N ′ such that `(S)∩`′(S′) = ∅ results
in the disjoint union of the two nets. Further, if the common label a ∈ `(S)∩`′(S′)
is associated in N to a place s with empty post-set and in N ′ to a place s′ with
empty pre-set (or vice versa) and the labelings are injective, we obtain precisely
the composition between open nets defined in [1].

Example 3. Consider the nets in Figure 4. In the LPN N the transition ta can
be executed only if a token is present in the interface place p1 labeled a, which
has no ingoing to any transition. In the LPN N ′ the transition tb is enabled as it
may lend a token from the interface place p′1 labeled b. The result of composition
of these two nets is the LPN N ⊕N ′, where now the execution of the transition
ta puts a token in the interface place p1 (the resulting marking is p1, p

∗
b , p
′
1) and

at this marking firing tb leads to the empty marking.

Proposition 1. Let Ni, i ∈ {1, 2, 3} be pairwise composable LPNs. Then N1 ⊕
N2 = N2 ⊕N1, and N1 ⊕ (N2 ⊕N3) = (N1 ⊕N2)⊕N3.

The composition ⊕ does not have the property that, in general, restricting to
the transitions of one of the components, we obtain the LPN we started with.

A subnet is a net obtained by restricting places and transitions of a net, and
correspondingly the flow function, the lending function and the initial marking.

Models of Circular Causality 11

p1

a

p2b

p∗b

tb

1

1

1

N

p′1

b

p′2a

p∗a

ta

1

(0,1)

1

N ′

p′1

b

p1

a

p∗a

p∗b

ta
1

(0,1) 1

tb
1

11

N ⊕N ′

Fig. 4. Two LPNs and their pairwise composition.

Definition 8. Let N = 〈S, T, F,L, `,m0〉 be an LPN, and let T ′ ⊆ T . We define
the subnet N |T ′ = 〈S′, T ′, F ′,L′, `,m′0〉, where: (a) S′ = {s ∈ S | F (t, s) > 0
or F (s, t) > 0 for t ∈ T ′} ∪ {s ∈ S | m0(s) > 0}, (b) F ′ = F |(S′×T ′)∪ (T ′×S′),
(c) L′ = L |S′×T ′ , (d) `′ = ` |S′∪T ′ , and (e) m′0 = m0 |S′ .

Definition 9. Let N and N ′ be two LPNs. We say that N is trace equivalent
to N ′ (in symbols, N ∼ N ′) whenever Tr(N) = Tr(N ′).

Proposition 2. For two composable LPNs N1, N2, we have that Ni ∼ (N1 ⊕
N2)|Ti , for i = 1, 2.

4 A semantic approach to circular causality

We review now a semantic approach to circularity based on the notion of event
structure with circular causality, which have been introduced in [6] and further
studied in [12] and [7]. Since [18,22], event structures (ES) are one of the classical
model for concurrency, and they are at least equipped with a relation (written `
in [22]) modelling causality, and another one modeling non-determinism (usually
rendered in terms of conflicts or consistency). Extensions to ES often use other
relations to model other kind of dependencies, e.g. or-causality [2]. ES can pro-
vide a basic semantic model for concurrent systems, by interpreting the enabling
{a} ` b as: “event b can be done after a has been done”. We use a relation to
model circular causality. Given a set of events E and an irreflexive and symmet-
ric relation representing conflicts (denoted with #), we say that a set X ⊆ E is
conflict-free (CF (X) in symbols) whenever ∀e, e′ ∈ X.¬(e#e′). We denote with
Con the set {X ⊆fin E | CF (X)}.

Definition 10. An event structure with circular causality (CES) is a quadruple
E = (E,#,`,
) where: (a) E is a set of events, (b) # ⊆ E × E is an
irreflexive and symmetric relation, called conflict relation, (c) ` ⊆ Con × E is
the enabling relation, and (d)
 ⊆ Con × E is the circular enabling relation,
The relations ` and
 are saturated, i.e. for all X,Y ∈ Con and for ◦ ∈ {`,
}:
X ◦ e ∧ X ⊆ Y =⇒ Y ◦ e. We say that E is finite when E is finite; we say
that E is conflict-free when the conflict relation is empty.

For a sequence σ = 〈e0 e1 . . .〉 (possibly infinite), we write σ for the set of events
in σ. We write σi for the subsequence 〈e0 . . . ei−1〉. If σ = 〈e0 . . . en〉 is finite,

12 M. Bartoletti ed al.

we write σ e for the sequence 〈e0 . . . en e〉. The empty sequence is denoted by ε.
We adopt the following conventions: ` e stands for ∅ ` e and we write a ` b for
{a} ` b. For a finite, conflict-free set X, we write X ` Y for ∀e ∈ Y. X ` e. For an
infinite, conflict-free X, we write X ` Y as a shorthand for ∃X0 ⊆fin X. X0 ` Y .
All the abbreviations above also apply to
.

A configuration C is a “snapshot” of the behaviour of the system. In [22], a
set of events C is a configuration if and only if for each event e ∈ C it is possible
to find a trace for e in C, i.e. a finite sequence of events containing e, which is
closed under the enabling relation:

∀e ∈ C. ∃σ = 〈e0 . . . en〉. e ∈ σ ⊆ C ∧ ∀i ≤ n. {e0, . . . , ei−1} ` ei

We refine the notion in [22] to deal with circular causality. Intuitively, for all
events ei in the sequence 〈e0 . . . en〉, ei can either be `-enabled by its predeces-
sors, or
-enabled by the whole sequence, i.e.:

∀e ∈ C. ∃σ = 〈e0 . . . en〉. e ∈ σ ⊆ C ∧ ∀i ≤ n.
(
{e0, . . . , ei−1} ` ei ∨ σ
 ei

)
Clearly, the configurations of a CES without
-enablings are also configura-

tions in the sense of [22], hence CES are a conservative extension of Winskel’s
general ES. Differently from ES, if C is a finite configuration of a CES , and σe
is a trace for all the events in C, not necessarily σ is a trace for C \{e} (see e.g.,
E2 in Figure 5).

To allow for reasoning about sets of events which are not configurations, we
introduce the auxiliary notion of X-configuration in Definition 11 below. In an
X-configuration C, the set C can contain an event e even in the absence of a
justification through a standard/circular enabling — provided that e belongs to
the set X. This allows, given an X-configuration, to add/remove any event and
obtain a Y -configuration, possibly with Y 6= X. We shall say that the events
in X have been taken “on credit”, to remark the fact that they may have been
performed in the absence of a causal justification. With this new concept in
mind, we can say that standards configurations are just ∅-configurations: they
represent sets of events where all the credits have been “honoured”.

Definition 11. Let E = (E,#,`,
) be a CES , and let X ⊆ E. A conflict-free
sequence σ = 〈e0 . . . en〉 ∈ E∗ without repetitions is an X-trace of E iff:

∀i ≤ n. (ei ∈ X ∨ σi ` ei ∨ σ
 ei) (13)

For all C,X ⊆ E we say that C is an X-configuration of E iff CF (C) and:

∀e ∈ C. ∃σ X-trace. e ∈ σ ⊆ C (14)

The set of all X-traces of E is denoted by TE(X), abbreviated as TE when X = ∅.
The set of all X-configurations of E is denoted by FE(X), or just FE when X = ∅.

Models of Circular Causality 13

a b

E1

a b

E2

c

b

a

E3

c

db

a

E4

Fig. 5. Four CES . We adopt the following graphical notation for depicting CES : they
are denoted as directed hypergraphs, where nodes stand for events. An hyperedge from
a set of nodes X to node e denotes an enabling X ◦ e, where ◦ = ` if the edge has a
single arrow, and ◦ =
 if the edge has a double arrow. A conflict a#b is represented
by a waved line between a and b.

Example 4. Consider the CES in Figure 5. E1 has enablings ` a, b
 b, and
conflict a#b. By Definition 11, ∅, {a}, {b} ∈ FE1 , but {a, b} 6∈ FE1 . E2 has
enablings a ` b and b
 a. Here ∅, {a, b} ∈ FE2 , while neither {a} nor {b} belong
to FE2

. Also, FE2
({b}) = {∅, {b}, {a, b}}, and FE2

({a}) = {∅, {a}, {a, b}}. E3 has
enablings {a, b} ` c, c
 a, and c
 b. The only non-empty configuration of E3 is
{a, b, c}. E4 has enablings {a, b}
 c, {a, b}
 d, c ` a, and d ` b. We have that
{a, b, c, d} ∈ FE4 . Note that, were one (or both) of the
 turned into a `, then
the only configuration would have been ∅.

Following [22], we assume the axiom of finite causes, that is, we always require
an event to be enabled by a finite chain of events. For instance, consider the event
structure: · · · en → · · · e3 → e2 → e1 → e0 For e0 to happen, an infinite number
of events must have happened before it. As in [22], we do not consider the set
{ei | i ≥ 0} as a configuration, because a justification of e0 would require an
infinite chain. Similarly, in the CES : a0 � a1 � a2 � a3 · · · � an · · · where,
for a0 to happen, an infinity of events must happen either before or after it, the
set {ai | i ≥ 0} is not a configuration according to Definition 11, because a
justification of a0 would require an infinite chain.

We relate Winskel’s ES with CES in Theorem 3 below. First, we introduce
the needed definitions.

Let F be a family of sets. We say a subset A of F is pairwise compatible if
and only if ∀e, e′ ∈

⋃
A. ∃C ∈ F. e, e′ ∈ C.

For a set of sets F we define the following three properties:

Coherence: If A is a pairwise compatible subset of F, then
⋃

A ∈ F.
Finiteness: ∀C ∈ F. ∀e ∈ C. ∃C0 ∈ F. e ∈ C0 ⊆fin C
Coincidence-freeness:

∀C ∈ F. ∀e, e′ ∈ C.
(
e 6= e′ =⇒ (∃C ′ ∈ F. C ′ ⊆ C ∧ (e ∈ C ′ ⇐⇒ e′ 6∈ C ′)

)
We say that F is a quasi-family of configurations iff it satisfies coherence and
finiteness; if F also satisfies coincidence-freeness, then we call F a family of
configurations. In that case, we say that F is a family of configurations of E
when

⋃
F = E.

A basic result of [22] is that the set of configurations of an ES forms a family
of configurations. On the contrary, the set of configurations of a CES does not

14 M. Bartoletti ed al.

satisfy coincidence-freeness. A counterexample is the CES E2 in Example 4,
where {a, b} ∈ F, but there exists no configuration including only a or b. Indeed,
the absence of coincidence-freeness is a peculiar aspect of circularity: if two
events are circularly dependent, each configuration that contains one of them
must contain them both.

Theorem 2. For all CES E, and for all X ⊆ E, the set FE(X) is a quasi-family
of configurations.

Despite faithfully representing the legitimate states of a system where all the
credits are honoured, sets of configurations are not a precise semantic model for
CES . Indeed, they are not able to discriminate among substantially different
CES , e.g. like the following: E : a
 b, b
 a, E′ : a ` b, b
 a, and E′′ :
a
 b, b ` a. It is easy to check that the sets of X-configurations of E,E′,E′′

coincide, for all X. This contrasts with the different intuitive meaning of ` and

, which is revealed instead by observing the traces: TE = {〈ab〉, 〈ba〉}, TE′ =
{〈ab〉}, and TE′′ = {〈ba〉}. To substantiate our feeling that configurations
alone are not sufficiently discriminating for CES , in Theorem 3 we show that for
all CES E there exists a CES E′ without `-enablings which has exactly the same
configurations of E. Therefore, the meaning of `, that is the partial ordering of
events, is completely lost by just observing configurations.

Definition 12. Let F be a quasi-family of configurations of a set E. We define
the CES Ê(F) = (E,#, ∅,
) as follows:

(a) e#e′ ⇐⇒ ∀C ∈ F. e /∈ C ∨ e′ /∈ C
(b) X
 e ⇐⇒ CF (X) ∧ X is finite ∧ ∃C ∈ F. e ∈ C ⊆ X ∪ {e}

Theorem 3. For all quasi-families of configurations F, we have F
Ê(F) = F.

The consequence of this theorem, formalized by the corollary below, is that the

-enabling is the only (circular) causality relation needed, as the standard one
can be encoded into this one.

Corollary 1. For all ES E, there exists a CES E′ without `-enablings such that
FE = FE′ .

The theorem below yields a polynomial-time algorithm for computing the
set RE of reachable events, i.e. those events which belong to some configuration
of E. The algorithm exploits Kleene’s fixed point theorem, by defining the set
RE as the greatest fixed point of a monotonic (increasing) function F .

Theorem 4. For all X,Y, Z ⊆ E, let:

GY (Z) = Y ∪ {e | Z ` e} F (X) = lfpG{e | X
e}

Then, for all finite conflict-free CES E, we have RE = gfpF

Models of Circular Causality 15

Following the characterization provided by Theorem 4, an algorithm for con-
structing RE can be devised as follows. Let X0 be the set of all events in E. At
step 0, we compute X1 = F (X0). This can be done by interpreting the (minimal)
`-enablings of E as a set of propositional Horn clauses, and then by applying
the forward chaining algorithm with input {e | X0
 e}. The forward chaining
can be computed in polynomial-time in the number of `-enablings. If X1 = X0,
then we have finished, i.e. X1 = RE. Otherwise, we compute X2 = F (X1) and so
on, until reaching a fixed point. In the worst case, this requires |E| steps, hence
we have a polynomial-time algorithm for computing RE.

5 Relating models

We now cast the three formalisms illustrated in the previous sections in a more
coherent picture, by pointing out some relations among them. In particular, we
show that:

– each conflict-free CES E can be associated to a Horn PCL theory ∆ such
that the atoms provable in ∆ are exactly the events reachable in E.

– each Horn PCL theory ∆ can be associated to a LPN N such that the places
marked in some honoured marking of N are exactly the atoms provable in ∆.

Taken together, these results state that finite conflict-free CES have the same
expressivity of Horn PCL, and that PCL is no more expressive than LPNs;
further, CES and LPNs provide two different models of Horn PCL.

5.1 CES vs. PCL

In Definition 13 we show a translation from CES into PCL formulae. In par-
ticular, our mapping is a bijection of finite, conflict-free CES into the Horn
fragment of PCL , which comprises atoms, conjunctions and non-nested (stan-
dard/contractual) implications. When writing X ` e we shall mean that X is a
minimal set of events such that (X, e) ∈ ` (similarly for
).

The encoding [·] maps an enabling ` into an→-clause, and a circular enabling

 into an �-clause.

Definition 13. Let E = 〈E,#,`,
〉 be a conflict-free CES . The encoding [E]
of E into a Horn PCL theory is defined as follows:

[(Xi ◦ ei)i∈I] = {[Xi ◦ ei] | i ∈ I}

[X ◦ e] =
(∧

X
)

[◦] e
where [◦] =

{
→ if ◦ = `
� if ◦ =

Notice that the encoding above can be inverted, i.e. one can also translate a
Horn PCL theory into a conflict-free CES . The following theorem establishes
the correctness and completeness of the encoding.

Theorem 5. Let E be a finite, conflict-free CES . An event e is reachable in E

iff [E] `PCL e.

16 M. Bartoletti ed al.

T = {(X, a,→) | X → a ∈ ∆} ∪ {(X, a,�) | X � a ∈ ∆}

S = L(∆)× (T ∪ {∗})

F (s, t) =

{
1 if

(
s = (a, ∗) ∧ t = (X, a,−)

) ∨ (
s = (a, t) ∧ t = ({a} ∪X, c,→)

)
0 otherwise

F (t, s) =

{
1 if s = (a, t′) ∧ t = (X, a,−) ∧ t′ 6= ∗
0 otherwise

L(s, t) =

{
1 if s = (a, t) ∧ t = ({a} ∪X, c,�)

0 otherwise

`(x) =

{
a if x = (a, t) ∈ S or x = (X, a,−) ∈ T
⊥ otherwise

m0(s) = if s = (a, ∗) then 1 else 0

Fig. 6. Mapping from Horn PCL theories to Lending Petri Nets.

A consequence of Theorem 5 is that we can exploit properties of PCL to
derive properties of conflict-free CES. For instance, from the tautology (a →
b) ∧ (b � c) → (a � c) of PCL we deduce that any conflict-free CES with
enablings a ` b and b
 c can be enriched with the enabling a
 c, without
affecting the reachable events.

5.2 LPNs vs. PCL

The result in Theorem 7 below gives a correspondence between LPNs and Horn
PCL theories. Technically, we associate Horn PCL theories with LPNs which
preserve the provability relation, in the sense that ∆ ` X if and only if the LPN
associated to ∆ reaches a suitable configuration where all the atoms in X have
been fired. The idea of our construction is to translate each Horn clause into a
transition of an LPN, labeled with the action in the conclusion of the clause.

Definition 14. For a Horn PCL theory ∆, we define P(∆) as the lending Petri
net 〈S, T, F,L, `,m0〉 in Figure 6.

We briefly comment below the construction in Figure 6. For each clause
X ◦ a in ∆ (with ◦ ∈ {→,�}), we introduce a transition of the form (X, a, ◦),
and we label it with a (the component X keeps track of the premises of the
implication). Places can have two forms: (a, t) for some label a and transition t,
or (a, ∗). Intuitively, a place (a, ∗) is used to ensure that a transition labeled a
can only be fired once, while a place (a, t) (labeled a) is used to collect the tokens
produced by transitions labeled a, and to be consumed by transition t. Indeed,
the definition of F (t, s) ensures that each transition labeled a puts a token in each

Models of Circular Causality 17

F (t, s) saa s
b
a s
∗
a s

a
b s

b
b s
∗
b

ta 1 1
tb 1 1

F (s, t) saa s
b
a s
∗
a s

a
b s

b
b s
∗
b

ta 1
tb 1 1

L(s, t) saa s
b
a s
∗
a s

a
b s

b
b s
∗
b

ta 1
tb

sab

b

saa

a

sbb

b

sba

a

s∗a

s∗b

a
1

(0,1) 1

1

b
1

11

1

Fig. 7. LPN obtained from the PCL theory ∆ of Example 5.

place labeled a, while that of F (s, t) (resp. L(s, t)) yields a non-lending (resp.
lending) arc from each place (a, t) to t whenever t has a in its premises. Observe
that a transition t = (X, a, ◦) puts a token in each place (a, t′) with t′ 6= ∗,
and all the transitions bearing the same labels, say a, are mutually excluding
each other, as they share the unique input place (a, ∗). The initial marking will
contain all the places in L(∆) × {∗}; if a token is consumed from one of these
places, then the place will be never marked again. Finally we observe that each
transition has a non empty pre-set: for a transition t = (X, a, ◦) we have at least
(a, ∗) in the pre-set, and in particular if ◦ = � then the pre-set •t contains
exactly (a, ∗), as •t does not include places connected through lending arcs.

Example 5. Let ∆ = a → b, b � a. According to Definition 14, P(∆) has the
following places and transitions:

T ={ta, tb}, where ta = (b, a,�), tb = (a, b,→)

S ={saa, sba, s∗a, sab , sbb, s∗b}, where

saa = (a, ta), sba = (a, tb), s
∗
a = (a, ∗), sab = (b, ta), sbb = (b, tb), s

∗
b = (b, ∗)

The arcs and the labels of P(∆) are depicted in Figure 7. Observe that the LPN
P(∆) has exactly one maximal firing sequence, i.e.:

s∗a, s
∗
b

ta−→ s∗b , s
a
a, s

b
a, s

a
b

tb−→ saa, s
b
b

All the transitions in P(∆) labeled with a consume the token from the place
(a, ∗) in its pre-set, and this place cannot be marked again as it does not belong
to the post-set of any transition, hence among them only one can fire. As each
transition may be fired at most once, the net associated to a Horn PCL theory
is an occurrence net, in the sense of van Glabbeek and Plotkin in [21].

A relevant property of P is that it is an homomorphism with respect to
composition of theories. Thus, since both ⊕ is associative and commutative, we
can construct an LPN from a Horn PCL theory ∆1 · · ·∆n componentwise, i.e.
by composing the LPNs P(∆1) · · ·P(∆n).

Theorem 6. For all ∆1, ∆2, we have that P(∆1, ∆2) ∼ P(∆1)⊕ P(∆2).

18 M. Bartoletti ed al.

The reachable markings m of the LPN associated to a Horn PCL theory are
completely characterized by a pair (m,Ω(m)), called configuration of the LPN.

Definition 15. For a Horn PCL theory ∆, the configuration associated to a
marking m ∈ Mk(P(∆)) is the pair (m,Ω(m)), defined as: (i) m = {a ∈ L |
m((a, ∗)) = 0} (ii) Ω(m) = {`(s) | m(s) < 0}.

The first component is the set of the labels of the transitions that have
been executed (the places (a, ∗) are empty), and the second one is the set of
labels of places with a negative marking, which means that the corresponding
transitions have not been executed yet (as the LPN is correctly labeled). Clearly,
the marking m is honored whenever Ω(m) is empty.

The following proposition establishes that configurations characterize mark-
ings of the LPNs associated to Horn PCL theories.

Proposition 3. Let m and m′ be markings of P(∆), for some Horn PCL theory
∆. If m = m′ and Ω(m) = Ω(m′), then m = m′.

In Theorem 7 below we state the core correspondence between lending Petri
nets and PCL: our construction maps the provability relation of PCL into the
reachability of certain configurations in the associated LPN.

Theorem 7. For all Horn PCL theories ∆, and for all conjunctions of atoms X:

∆ ` X ⇐⇒ ∃m ∈ Mk(P(∆)). X ⊆ m ∧ Ω(m) = ∅

6 Conclusions

We have presented three formalisms which can model circular causal depen-
dencies, and we have established some relations among them. We conclude by
pointing out some differences, as these may open new research directions.

PCL and CES do not have a way to control the usage of resources, whereas
LPNs have this feature: once a resource is used, it is not any longer available.
For instance, consider the following lending Petri net:

p1

p3

p2

b
1

1

1

c
1 1

1

a

1

(0,1)

(0,1)

1

Here the unique resource produced by a can be used either by b or by c, but
never by both. Note that in no one of the maximal firing sequencess, i.e. ∅ a−→
p2, p1, p3

b−→ p1 and ∅ a−→ p2, p1, p3
c−→ p3, the reached marking is not honored.

Models of Circular Causality 19

Instead, by modelling the above situation as the PCL theory a → b, a → c
and (b ∧ c) � a, we can deduce both a ∧ b ∧ c, as the atom a contractually
implied by b ∧ c can be “consumed” by both implications a → b and a → c.
The logical approach may be possibly accommodated when moving to resource-
oriented logics like linear logic (indeed, the idea of connecting Petri nets and
linear logic is not new, see [16]); this appears more difficult to obtain when
semantic models (like event structures) are considered.

Lending Petri nets, unlike CES and PCL, can express situations where ex-
ecuting a transition depends on the availability of two resources, one of which
may possibly be lent. Consider, for instance, the following LPN:

p1

p2

p3

a

(1,1)

1

b
1

1

Transition a can be fired after b, because it needs at least one token in
place p1, whiel the other required token can be lent. Hence, we have the following

firing sequence: p3
b−→ p1

a−→ p2, p1. Were b allowed to fire twice (e.g. with p3, p3
as the initial marking), then an honored final marking would be reached.

We finally point out that these models have found a common ground in the
framework of contract-oriented computing [11,9]. There, participants advertise
their contracts to a contract broker. The broker composes contracts which admit
some kind of agreement, and then establishes a session among the participants
involved in them. In such scenario, the broker guarantees that — even in the
presence of malicious participants — no interaction driven by the contract will
ever go wrong. At worst, if some participant does not reach her objectives, then
some other participant will be culpable of a contract infringement. In this work-
flow, it is crucial that contract brokers are honest, that is they never establish
a session in the absence of an agreement among all the participants. Recall the
scenario outlined in Section 1, where Alice and Bob are willing to exchange
their resources. In her contract, Alice could promise to give a (unconditionally),
declaring that her objective is to obtain b. A malicious contract broker could
construct an attack by establishing a session between Alice and Mallory, whose
contract just says to take a and give nothing in exchange. Mallory does not
violate her contract, because it declares no obligations, and so Alice loses.

Models of circular causality like those presented here can be used by Alice to
protect herself against untrusted contract brokers. By advertising the contract
b � a, Alice is saying that she promises to do a, but only under the guarantee
that b will be done. Then, if the broker puts Alice in a session with Mallory
(whose contract is not guaranteeing b), then Alice will not be culpable if she
refuses to do a. Of course, also the contract b → a would have protected Alice,

20 M. Bartoletti ed al.

but this would have limited the interactions to those contexts where some other
participants are not protected [8].

References

1. van der Aalst, W.M.P., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: Multiparty
contracts: Agreeing and implementing interorganizational processes. Comput. J.
53(1) (2010)

2. Baldan, P., Corradini, A., Montanari, U.: Contextual Petri nets, asymmetric event
structures, and processes. Inf. Comput. 171(1), 1–49 (2001)

3. Bartoletti, M., Cimoli, T., Giamberardino, P.D., Zunino, R.: Contract agreements
via logic. In: Proc. ICE (2013)

4. Bartoletti, M., Cimoli, T., Pinna, G.M.: Lending Petri nets and contracts. In:
FSEN 2013. LNCS, vol. 8161, pp. 66–82 (2013)

5. Bartoletti, M., Cimoli, T., Pinna, G.M.: Lending petri nets (submitted), available
at http://tcs.unica.it/publications

6. Bartoletti, M., Cimoli, T., Pinna, G.M., Zunino, R.: An event-based model for
contracts. In: Proc. PLACES (2012)

7. Bartoletti, M., Cimoli, T., Pinna, G.M., Zunino, R.: Circular causality in event
structures. Fundamenta Informaticae 134(3-4), 219–259 (2014)

8. Bartoletti, M., Cimoli, T., Zunino, R.: A theory of agreements and protection. In:
Proc. POST (2013)

9. Bartoletti, M., Tuosto, E., Zunino, R.: Contract-oriented computing in CO2 . Sci-
entific Annals in Computer Science 22(1), 5–60 (2012)

10. Bartoletti, M., Zunino, R.: A logic for contracts. Tech. Rep. DISI-09-034, DISI -
Univ. Trento (2009)

11. Bartoletti, M., Zunino, R.: A calculus of contracting processes. In: LICS (2010)
12. Cimoli, T.: A theory of Agreement and Protection. Ph.D. thesis, University of

Cagliari (May 2013)
13. Greibach, S.A.: Remarks on blind and partially blind one-way multicounter ma-

chines. Theoretical Computer Science 7, 311–324 (1978)
14. Hobbes, T.: The Leviathan (1651), chapter XIV
15. Kleene, S.: Introduction to metamathematics. North-Holland Publishing Company

(1952)
16. Mart́ı-Oliet, N., Meseguer, J.: From Petri nets to linear logic. Mathematical Struc-

tures in Computer Science 1(1), 69–101 (1991)
17. Moschovakis, J.: Intuitionistic logic. In: Zalta, E.N. (ed.) The Stanford Encyclope-

dia of Philosophy (2008)
18. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,

part i. Theor. Comput. Sci. 13, 85–108 (1981)
19. Reisig, W.: Petri Nets: An Introduction, Monographs in Theoretical Computer

Science. An EATCS Series, vol. 4. Springer (1985)
20. Stotts, P.D., Godfrey, P.: Place/transition nets with debit arcs. Inf. Proc. Lett.

41(1) (1992)
21. van Glabbeek, R.J., Plotkin, G.D.: Configuration structures. In: LICS (1995)
22. Winskel, G.: Event structures. In: Advances in Petri Nets. pp. 325–392 (1986)
23. Zielonka, W.: Notes on finite asynchronous automata. Theoretical Informatics and

Applications 21(2), 99–135 (1987)

	Models of Circular Causality

