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Abstract

We outline a methodology for designing and composing sesvin a secure manner. In particular,
we are concerned with safety properties of service behavBrrvices can enforce security policies lo-
cally and can invoke other services that respect given gga@antracts. This call-by-contract mechanism
offers a significant set of opportunities, each driving seauays to compose services. We discuss how
to correctly plan services compositions in several releetasses of services and security properties. To
this aim, we propose a graphical modelling framework, based foundational calculus called<? [13].

Our formalism features dynamic and static semantics, sovadf for formal reasoning about systems.
Static analysis and model checking techniques provide #sigder with useful information to assess

and fix possible vulnerabilities.

Index Terms

Web services, call-by-contract, language-based secstiiic analysis, system verification.

. INTRODUCTION

Service-oriented computing (SOC) is an emerging paradigrdetsign distributed applica-
tions [42], [41], [25]. SOC applications are obtained bytailily composing and coordinating (i.e.
orchestrating available services. Services are stand-alone compo#timits distributed over a
network, and made available through standard interactiechanisms. Composition of services
may require peculiar mechanisms to handle complex interagiatterns (e.g. to implement
transactions), while enforcing non-functional requiremtseon the system behaviour, like e.g.
security, availability, performance, transactionaliality of service, etc. [46]. An important
aspect is that services aopen in that they are built with little or no knowledge about thei
operating environment, their clients, and further sewiterein invoked. Web Services [2], [45],
[48] built upon XML technologies are possibly the most ithagive and well developed example
of the SOC paradigm. A variety of XML-based technologiesenbeen devised for describing,
discovering and invoking web services [17], [19], [16], [A%here are also several standards
for defining and enforcing non-functional requirements efvges, e.g. WS-Security [4], WS-
Trust [3] and WS-Policy [47] among others.

The success of the SOC paradigm is highly related to the dewednt of network infras-

tructures supporting interoperable and secure messagnog@ services, as well as high-level
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coordination standards. A further element is the definiGbnovel methodologies for modelling,
analysing and certifying SOC systems, see e.g. [26]. A ehglhg issue for SOC research is how
to compose existing services into more complex ones, algodyerly selecting and configuring
services so to guarantee that their composition enjoys stasieable properties. Non-functional
aspects, e.g security, make service composition even harde

From a methodological perspective, Software Engineerimgulsl facilitate the shift from
traditional approaches to the emerging service-orientdatisns. Along these lines, one of the
goals of this paper is to strenghten the adoption of fornadneues for modelling, designing and
verifying SOC applications. In particular, we propose a S@&delling framework supporting
history-based securitgnd call-by-contract

The starting point of our work ia™? [13], [8], a foundational calculus for describing, selagti
and securely composing services. The execution of a prognagninvolve accessing security-
critical resources; these actions are logged into higofée security mechanism may inspect
these histories, and forbid those executions that woulldtadhe prescribed policies. The call-by-
contract selection mechanism implements a matchmakirgyitign based on service behaviour.
This algorithm exploits static analysis techniques to cletike plans for resolving the call-by-
contract involved in a service orchestration.

In our modelling framework, services are rendered as tyjgrams. Service interfaces extend
the WSDL interfaces: besides the standard WSDL attributessdglesemantic information about
service behaviour. In our model, the published interfaca service is an annotated functional
type, of the formn; KN Intuitively, when supplied with an argument of typg the service
evaluates to an object of type. The annotationH is a sort of context-free grammar that
describes all the possible run-time histories of the ses/idhusH can be exploited to constrain
the selection of a service that respects the desired sgquoperties. Service interfaces are
mechanically inferred by a type and effect system.

To select a service that matches a given contract, a clisaéssa request of the formq , 7.

A request typer = 7, - 7, matches those services with interfaclei 79 Whose abstract
behaviourH respects the policy. These services are guaranteed to respentall the possible
executions.

The selection algorithm searchessarvice repositoryfor an interface matching the request

type. Since service interactions may be complex, it mightHee case that a local choice for
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a service is not secure in a broader, “global” context. Fstance, choosing a low-security e-
mail provider might prevent you from using a home-bankingise that exchanges confidential
data through e-mail. In this case, you should have plannedétection of the e-mail and bank
services so to ensure their compatibility. To cope with #irsd of issues, we define a static
machinery that determines thvéable plansfor selecting services that respect all the contracts,
both locally and globally.

The main contributions of the present paper are the follgwin

1) aformal modelling language for designing secure sesviGair graphical formalism resem-
bles UML activity diagrams, and it is used to describe thekftow of services. Besides
the usual workflow operators, we can express activitiesesulp security constraints. The
awareness of security from the early stages of developméhtoster security through
all the following phases of software production. Our diagsahave a formal operational
semantics, that specifies the dynamic behaviour of servMeseover, diagrams can be
statically analysed, to infer the contracts satisfied byraise Our approach allows for
a fine-grained characterization of the design choices tfi@ttasecurity (Section II). We
support our proposal with some case study scenarios.

2) the integration of a verification technique to study cosiflon properties of service
networks. A static analysis is used to infer an abstractioth® behaviour of a network.
This abstraction is then model-checked to construct a coborehestrator that coordinates
the running services in a secure manner. Secure orchestraili also allow for improving
the overall performance by avoiding unnecessary dynanaigrigg checks while executing
services. Studying the output of the model-checker mayligighpossible design flaws,
and suggest how to revise the calls-by-contract and theriseqolicies. All the above
machinery is completely mechanizable, and we are impleingerat tool to support our
methodology. The fact that the tool is based on strong thieategrounds (i.e\™ type
and effect inference and verifier) positively impacts thieabglity to our approach.

3) a study of various planning and recovering strategies.Wgeuss several situations in
which one needs to take a decision before proceeding wittexieeution. For instance,
when a planned service disappears unexpectedly, one casehmreplan, i.e. to adapt the
current plan to the new network configuration. Dependinghenitoundary conditions and

on past experience, one can choose among different tadteesomment on the feasibility,
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advantages and costs of each of them.

The paper is organized as follows. In Section Il we introdadexonomy of security aspects
in service-oriented applications. Section Ill, IV and V geat our formal model. In particular,
Section Il introduces our design notation and the openaticemantics; Section IV presents
service contracts, and outlines how they can be automigtio#ferred; Section V illustrates
how to select services under the call-by-contract philagppnd discusses some planning and
recovering strategies. Two scenarios for secure serviggosition are presented in Section VI.
We conclude the paper with some remarks (Section VII) abbatdxpected impact of our

methodology on Software Engineering, and we discuss sotatedeworks.

Il. A TAXONOMY OF SECURITY ASPECTS INWEB SERVICES

Service composition heavily depends on which informatibow a service is made public,
on how to choose those services that match the user’s regemts, and on their actual run-time
behaviour. Security makes service composition even hasdegvices may be offered by different
providers, which only partially trust each other. On the twaed, providers have to guarantee
that the delivered service respects a given security pahcgny interaction with the operational
environment, and regardless of who actually called theiser®©n the other hand, clients may
want to protect their sensitive data from the services iedok

In the history-basedapproach to security, the actual access rights of a runnexemf code
depend on (a suitable abstraction of) the execution histbgll the pieces of code run so far.
This approach has been receiving major attention, bothealetrel of foundations [5], [30], [44]
and of language design and implementation [1], [27].

The observations of security-relevant activities, e.geropg socket connections, reading and
writing files, accessing critical memory regions, are chiwents Histories are sequences of
events. The class of policies we are concerned with is thaafdtyproperties of histories, i.e.
properties that are expressible through finite state autonTde typical run-time mechanisms
for enforcing history-based policies areference monitorswhich observe program executions
and abort them whenever about to violate the given policyeReice monitors enforce exactly
the class of safety properties [43].

Since histories are the main ingredient of our security haue taxonomy speaks about how

histories are handled and manipulated by services. We fooube following aspects.
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Stateless / stateful services

A stateless service does not preserve its history acrofadigvocations (yet it checks the
history within each invocation). Instead, a stateful sexkeeps track of the histories of all the
past invocations. Steteless services can enforce polibasinspect the history of the current
invocation only, e.g. resource usage control. Statefulises allow for more expressive security
policies: for instance, a stateful service can bound thebmiraf invocations on a per-client basis,
while a stateless service cannot. More in general, stasefidices can exploit their histories to
record security-relevant information about the state @#ntlsessions. Consider for instance a
service that requires password authentication, and thatsgonly three chances per hour to
authenticate. This can be modelled as a stateful servicéhisncase the history keeps track
of the number of failed authentication attempts. The sécyolicy prevents the service from
being used by a caller for which the history has recordedetlfiaded authentication attempts
in the last hour. Although stateless services admit sgcpaticies that are less expressive than
those of stateful services, static analysis can usuallgrishough information to ensure secure
composition. For instance, consider a client that wantsugpdome pharmaceuticals through an
online vendor, while being assured that his shopping listds leaked to other services (e.g.
insurance companies). Statically analysing pharmacyicEs\permits to match the client with
a service conforming to its requirements. This is becauedartformation recorded in stateless

histories is enough to show possible leaks.

Local / global histories

Local histories only record the events generated by a sedaically on its site. Instead, a
global history may span over multiple services. Local his®are the most prudent choice when
services do not trust other services, in particular theohies they generate. In this case, a service
only trusts its own history — but it cannot constrain the gastory of its callers, e.g. to prevent
that its client has visited a malicious site. Global histerinstead require some trust relation
among services: if a service A trusts B, then the history of A m@mprise that of B, and so A
may check policies on the behaviour of B. For instance, censad alliance of services trusting
each other, that wish to implement a distributed black-hobre in detail, when any of the
services in the alliance black-lists (through a suitablenévn the history) an external service,

then all the alliance must abstain from invoking that exaéservice. This can be implemented
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by making the services in the alliance share a global hisBefore invoking an external service,
the caller inspects the global history to find whether it hasrbblack-listed beforehand. Note
that the trust relationship among the services in the aéais crucial: even a single untrusted
service could compromise the security of the alliance, byiawasly modifying the global
history. To securely implement the global history, i.e. t@tpct its integrity, communication
between services is done through suitable cryptograptotopols. These protocols must be
designed to be coherent with the existing trust relatignskig. signed histories are considered

reliable only if the signer is trusted [51].

First order / higher order requests

A request typer 2 7’ is first order when both- and 7' are base typesl{t, Bool, etc.).
Instead, ifr or 7" are functional types, the request is higher order. In paerc if the parameter
(of type 7) is a function, then the client passes some code to be ppssdgcuted by the
requested service. Symmetrically, 7if is a function type, then the service returns back some
code to the caller. Mobility of code impacts the way histerae generated, and demands for
particular mechanisms to enforce security on the site wtiere€ode is run. A typical protection
mechanism issandboxing that consists in wrapping code within an execution monttaat
enforces a given security policy. When there is no mobile cotwre efficient mechanisms can
be devised, e.g. local checks on security-critical openati For instance, Java Applets are mobile
code applications running on the client browser, and theyhbminvoked through higher order
requests. A browser calls a service that returns an appketrowser runs then the applet, while
enforcing its own security policy, e.g. the standard JavadiBaxing. Actually, history-based
security is more general than Java, since it checksaththe past execution history, while Java
only checks the frames in the call stack [34]. Higher ordguests also allow a client to pass
some mobile code as a parameter to a service. The executittrato€ode can be constrained

both by the client and by the service, by suitable policiepdeed on its execution.

Dependent / independent threads

In a network of services, several threads may run concuyremd compete for services.
A thread is a computation started from a particuldtiator service in the network. Roughly,

initiator services are those delegated by the active adtottain a given goal. Independent
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threads keep execution histories separated, while depertdeeads may share part of their
histories Therefore, dependent threads may influence een when using the same service,
while independent threads cannot. Implementing indep&nitieeads requires that each service
records the history of each thread that invoked that serviee services actually maintain a
mapping from thread initiators to their histories. For amste, consider a service that can be
invoked only once. If threads are independent, this “or@“skervice has no way to enforce
single use. It can only check that no thread uses it more thae,decause each thread keeps

its own history. Dependent threads are necessary to clyriegtlement the one-shot service.

IIl. SERVICES

The basic entity in our graphical formalism is that sdrvice We shall first describe the
syntax of services, and then study how they behave when @tlggo a network. A service
is represented as a box containing its code. The four comfetee box are decorated with
information about the service interface and behaviour. [Bbel ¢ : 7 indicates thdocation ¢
where the service is made available, and its certified puddisnterfacer (discussed later on

in Section 1V). The other labels instead are used to reptakenstate of a service at run-time.

f T i ¢ .71  service locatiorf + interfacer
™ orchestration plan
B n event history
(m, ®) monitor flagm + sequenc@ of active policies
~ < B service code
n (m, @)

Fig. 1. Execution state of a service.

The labelr is an abstraction of the service executiastory. In particular, we are concerned
with the sequence of security-relevant events happenecktsoes in the past, in the spirit
of history-based security [1]. The labél, ®) is a pair, where the first element is a flag
representing the on/off status of the execution monitod, #we second element is the sequence
w1 -+ - Of active security policies The monitor must check that services adhere to each

policy ¢;, for i € 1..k, when the flag is on. Security policies are modelled as reguriaperties
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of event histories, i.e. properties that are recognizalylea dinite state automaton. Although
the soundness of our design and analysis techniques doetepend on the logic chosen for
expressing regular properties of histories, we find it coremt to express policies through our
template security automaig@ee below).

The labelr is the plan used for resolving service choices. A plan formalises howalk c
by-contractreq ,7 is transformed into a call-by-name. Plans may come in sewkff@rent
shapes [11]. Here we focus on a very simple form of plansmappings from request labets

to service locationg. We represent plans with the syntax defined in Fig. 2.

= 0 empty
r[f] service choice
r[?] unresolved choice
|7 composition

Fig. 2. Syntax of plans.

The empty plard has no choices; the plan/] associates the service published at §iteith
the request labelled. A plan iscompletewhen it has no unresolved choices. Compositiam
plans is associative, commutative and idempotent, andléstity is the empty pla. Since
plans are functions, they have a single choice for each stque.r[¢] | r[¢'] implies ¢ = ¢'.
The label B inside the box is @lock that describes the workflow behaviour of the service,
in particular of the security-relevant activities. ForigalB it is a control flow graph [40] with
nodes modelling activities, and arrows modelling intragadural flow. The syntax of activities
and flow graphs are defined in Fig. 3, while Fig. 4 summarizegehevant syntactic categories.
Activities comprise basic activities, events, requestsusty blocks, and planning blocks.
« A basic activitya is an internal computation that does not affect securiilyeat objects.
For instance, evaluating a boolean or arithmetic exprasaie basic activities.

. An eventa(o) abstracts from a security-critical action performed on an object. For
instance,write(foo) for writing the file foo, sgn(¢) for a certificate signed by, etc. We
simply write o when the target object is immaterial.

« A service requestakes the fornmreq ,7. The labelr uniquely identifies the request in a
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A = activities

a basic activity
a(o) event
req ,7 request
©[B| security block
{B} planning block
B = (N,A,—) service flow graph
where N finite set of nodes
A:N— A labelling function
— CNXxN set of arrows

Fig. 3. Syntax of services.

network of services, and the request typé defined by:
Too=0b|757

whereb is a base typel(t, Bool, void,...). The annotationp on the arrow is the query
pattern (or‘contract”) to be matched by the invoked service. For instance, theestdqupe

r % 7/ matches services with functional type— 7/, and whose behaviour respects the
policy .

« A security blocky|B] annotatesB with the policy ¢, with the intention thatp must be
obeyed while running3. This can be accomplished by enabling the execution mortitat
checks the history againgtat each step of the execution Bf We shall see later on a static
analysis of services that will allow to turn off the execuatimonitor, while guaranteeing
that the policyy is obeyed.

« A planning block{B} constructs a plan for the execution 8f (see Section V for more
details on how this is accomplished).

Both kinds of blocks can be nested, and they determine theesgbpolicies (hence called

local policies[7]) and of planning.

Service flow graphs? = (N, A, —) are directed graphs, wheré€ is the (finite) set of nodes,

A is a function that maps nodes to activities, andis the set of arrows. Note that loops are
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0,0,... €0bj Objects (a finite set)
a, ... € Act Actions (a finite set)
a(o),... € Ev=Act x Obj Events

n,n,... €EV Histories (finite sequences of events)
o, ¢, ... €Pol Policies (regular properties of histories)
r,r' ... € Req Request labels

00,... €Loc Service Locations

m,7',... € Req— Loc Plans (functions fronReq to Loc)

Fig. 4. Syntactic categories.

permitted in flow graphs, to model iterative computatione #ésume that each graph has a
single entry node, and a single exit node.

This graphical formalism is based oxi“?, a call-by-value\-calculus enriched with local
security policies and call-by-contract service requeSitsce our main focus is on secure com-
position, in the graphical model we do not render all the Ue=d of \™?. In particular, we
neglect variables, higher-order functions, and paramassing. However, we feel free to use

these features in our examples, because their treatmeriiecdivectly inherited froni\"? .

Semantics of services

We formally define the behaviour of services through a grairiting semantics [6]. In this
section, we assume that the services which initiate a camtipatare furnished with an arbitrary
plan. In the next section, we shall discuss a static machithat will enable us to construct these
plans so to guarantee that computations will never go wroagthey satisfy all the contracts
and the security policies on demand. We shall also show straegies to adopt when services
disappear unexpectedly (Section V).

The graph rewriting semantics for the case of dependenadirés split in two parts: basic
activities, events, security blocks, requests and retamesshown in Fig. 5. Instead, Fig. 10
details the rules that involve planning and recoveringtstias, i.e. planning blocks, requests
to unavailable services, unresolved requests, serviceg gitown and up, and publication of

new services. We shall briefly discuss the case of indepérttiesads below in this section.
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All the remaining axes in the taxonomy are covered by our s¢ice\When irrelevant, we omit
the labelr in services. Note that the actual values for some labels lasrBEQ and ReT are
defined later on in Fig. 6, since they depend on the choice madlee security aspects discussed
in Section Il. This gives rise to different behaviours of wegts and returns according to the
possible choices in the taxonomy.

The configurations of our semantics are sets (i.e. netwarkservices. We mark the next
activity to be performed by a running service with an oveie.g.o(0) means that the event
a(o) is about to be fired. An activity just executed is marked withuaderline, e.ga(o). We
extend this notation to block®, i.e. B means that the entry node &f is the next activity,
while B means that the exit node &f was the last executed one. Also, configurations comprise
dashed arrows that connect a running request with the invekevice.

We now briefly discuss the graph rewritings in Fig. 5. Notet th@ only depict rewriting
within a context. For instance, the rewriting=- « in the XIP rule can be applied in any
context, i.e. within any block3 containinga.

« A basic activity is just passed over (rulei®).

. The evaluation of an event(o) requires checking compliance of the new histary(o)
with each policyy in ® (denotedna(o) = ®), if the execution monitor is on. If all the
policies are respected (rulevl, then «(o) is appended to the current history, and the
execution proceeds to the next block. Otherwise, if somécya$ violated (rule RAIL),
then the execution goes into a stuck stk . This state models a security exception
(for simplicity, we do not model here exception handlingteexing our formalism in this
direction would require to define, among the other thingsy kmcompensate from aborted
computations, e.g. like in Sagas [32], [20])

« The rule &Q says that, after a bloclB has been evaluated, the next activity is chosen
among the blocks with incoming arrows from. Note that branching is a special case of
SEQ, where the blockB is a conditional or a switch.

. Entering a security block[B] results in appending the policy to the sequence of active
policies. Leavingy[B] removesy from the sequence. In both cases, as soon as a history
is found not to respecp, and the execution monitor is on, the evaluation gets stuck.

. A requestreq ,7 under a planr[¢'| | = looks for the service at sité. If the service is

available (rule RQ), then the client establishes a session with that serviash@d arrow),
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3 m is on,
oo [} I a(o (]
P e B e ot B R S S R
VA T V4 T i V4 T L T
n B n B
" (m, @) N mdy) 0 ey " (m, @)
L r[lt']| = 4 L r[l']| 4 rle] |«
req, T
n’,®" in Fig. 6
n (m, @) 7 7 (m, ®")
A ! Y4 ! o
car
n" in Fig. 6
n (m, ®) n' (m', @) 0" (m/, @) n'

Fig. 5. Semantics of services in the case of dependent threads )Part |

and waits until it returns. Note that the meaning of the lalélnd @’ is left undefined in
Fig. 5, since it depends on the choice made on the securigctsgdiscussed in Section Il.
The actual values for the undefined labels are shown in Fidn articular, the initial

history of the invoked service is: (i) empty, if the servisestateless with local history; (i)
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Stateless servicé& Stateful service”’

Local histories| Global histories| Local histories| Global histories
/ =c / — / — 5 / —
REQ n n n n n n
Q' =¢ P =P P =¢ Q=P
RET n// — ,',, 77// — ,)7 n// — T] n// — 77/

Fig. 6. Histories and policies in four cases of the taxonomy.

the invoker history, if the service has a global history) @ine service past history, if the
service is stateful, with local history.

« Returning from a request (ruleER) requires suitably updating the history of the caller
service, according to chosen axes in the taxonomy. The la@lges for the history)” are
defined in Fig. 6.

The cases N/A, B IN, PLG OuT and INRES are defined in Fig. 10, and they have many
possible choices. When no service is available for a regeest lfecause the plan is incomplete,
or because the planned service is down), or when you havertraat a plan for a block, the
execution may proceed according to one of the strategiesigsBed in Section V.

A plan is viable when it drives no stuck computations (unless some servicetiomed in
the plan becomes unavailable). Under a viable plan, a fepaa always proceed its execution
without attempting to violate some security policy (therefthe execution monitor is unneeded),
and it will always manage to resolve each request. The staichinery described in Section IV

discovers viable plans.

An example

Consider a network composed by two services at locatiarsd /', both stateful and sharing a
global history. The service dtstarts with an actiom (the omitted target object is immaterial in
this example), and then issues a requesesolved to/’ by the provided plan. The service @t
performsa within a security blocky[- - - |, where the policyy preventsy from being fired twice.
A computation of the network is depicted in Fig. 7, where wsuase the execution monitor is
on. Note that the plam[¢'] is not viable, because it drives a computation that failsabse of

an attempted security violation, right before the secand fired at/'.
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‘ r[e] ¢ ¢ o] v

' olo] @ L ol

req .7 req .7
é on,®) & a (on0) &
¢ el e ¢ el ]
' ¢lal T -
req req
& (on.0) ¢ & (n.0) @ (o, 0)
¢ ] e rle) ¢ ey )
b - olal b N
req 7 aa o req .7
o n.0) @ (on,0) o (n.0) @ (on,2)

Fig. 7. A computation of two stateful services with global history.

Independent threads

To model independent threads, each service must keep aasepastory for each thread.
Equivalently, we keep a history for each thread initiatartfis aim, instead of a single histony
services now carry a functioh mapping the label; of each initiator to its corresponding history.
Moreover, we keep track of the initiator name: each serviweked on behalf of the initiatof;
is tagged as such. The semantics of services can now be easifjted, making.(¢;) play
the role ofn in the semantics for dependent threads. We depict in Fig.e8rite R=Q for
independent threads. The relation among’, ® andd’ is still the one defined by Fig. 6. Note
that’ is used to updaté.(¢;), only: all other histories in_ are left unchanged. The ruleeR

is dealt with similarly, as for the rulesa., PLG IN and R.G OuT.

Modelling security policies

Security policiesy are regular properties of histories, and they are definemligirtemplate

security automatad, ). A template security automaton gives rise to a finite stateraaton
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e 1 r[l] |« 4 rll] | w

B
n = L(¢r)
7', ® in Fig. 6 l7 0
L L=L{tr—n} L (m, ®) L (m, )

Fig. 8. Maintaining separate histories in the case of independent threads.

when the parameter is instantiated to an actual objeect These automata will be exploited to
recognize those histories obeying Formally, atemplate security automatas,,, is a 5-tuple
(S,Q, q, F, E), wherez is a parameter, and:

« S CActx (Obju{xz,z}) is the input alphabet,

o @ is afinite set of states,

e go € Q\ F is the start state,

« F C (Q is the set of final “offending” states,

« EC QxS xQ is afinite set otemplateedges, writtery 2 q.

The edges in a template security automaton can be of threks:kaitherq a—(oza ¢ whereo is
an object, org a—(xl q,0rq a—(:tz) ¢ (wherez means “different from:”). Given a objecto € Obj,
a template security automatoh, ) is instantiated into a finite state automatég,, by binding
the variablex to o. The intuition is thaty a—(gcl ¢" will result in an actual transitiony ), q,
while ¢ Q—(Q ¢ will give rise to a finite set of transition@M ¢, for all o € Obj\ {o}.

More formally, letA, ) = (S, Q, g, F, E) be a template security automaton, andolet Obj.
The finite state automaton,,, is defined by the 5-tupléEv, Q, qo, F, 6), where the transition

relation s is defined as follows:

(5:5U{qi(0—/)—>q|0'60bj,ﬂq’:qi(o—l)—>q’65}
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where the auxiliary relation is defined as:
N afo) (@) !
0 ={¢—4d[qg—oqd €L}

v U (0% 1 g e B)

o'€0bj\{0}

U {qﬂq’lqﬂq’EE}
Note that the definition fop adds self-loops for all the events not explicitly mentionedhe
template automatonl,,,,).

We say that a history) respectsy, written n = ¢, whenn is not in the language ofd,,),
for all o € Obj. Whenn, is in the language ofl,,) for some objecb, we say that; violates,
written n [~ . Note that instantiated template security automata aredet@rministic. Given a
history  and a policyy, we want thatall the traces of the instances df, ;) comply with ¢.
This is a form of diabolic (or internal) non-determinism. &ocount for that, we make the
“offending” states as final — thus going into a final state espnts a violation of the policy,

while the other states mean compliance to the policy.

V. CALL-BY-CONTRACT

A serviceB is plugged into a network by publishing it at a siteogether with its interface.
We assume that each site publishes a single service, anihtbdtaces are certified, e.g. they
are inferred by the type and effect system similar to thatlB].[Also, we assume that services

cannot invoke each other circularly, since this is quiteswral in the SOC scenatrio.

Contracts

The typesr are annotated withistory expressiong/ that over-approximate the possible run-
time histories. Fig. 9 displays the syntax of types and hyséxpressions. When a service with
interfacer 2% 7 is run, it will generate one of the histories denotedAbyNote that we overload
the symbolr to range over both service types and request typés .

History expressions, defined in Fig. 9, are a sort of confi@d-grammars. They include the
empty historye, eventsa, and H - H' that represents sequentialization of code+ H' for
branching, security blockg[H], recursionuh.H (1 binds the occurrences of the variallen

H), localization? : H, and planned selectiofw; > H; - - - 7 > Hy}.
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T, T n= types

b base type

L annotated functional type
H H = history expressions

€ empty

h variable

a(o) event

H-H sequence

H+ H' choice

w|H] security block

wh.H recursion

(:H localization

{m > Hy- 7> Hy} planned selection

Fig. 9. Service interfaces: annotated types and history expressions

The semanticsof a history expression is a set of histories possibly carrying security
annotations in the fornp[n]. We denote by[H] the semantics of/. We now briefly describe
how this semantics is constructed: see [8] for the formaltinent.

. The semantics of the history expressions the set of historiega}.

. The semantics off - H' is the set of historiegn’ such thaty € [H] and7n’ € [H'].

. The semantics off + H' comprises the histories such that) € [H] U [H'].

. The semantics op|H] is the set of histories[n] such thaty € [H].

. The semantics ofih. H is the least fixed point of the operatf(H) = [[H]]{H/h}, where we
denote with[H], the semantics of a history expressiéhin an environmenp, mapping
variablesh to sets of histories. For instance, the semanticg/of(y + « - k- 3) consists of
all the historiesa~5", for n > 0 (i.e. v, ayf, aay50,...).

« The construct : H localizes the behaviouH to the site/. E.g.,¢ : - (¢ : &/) -  denotes
two histories:a8 occurring at locatior?, anda’ occurring at/’.

. A planned selection abstracts the behaviour of serviceestiquGiven a plam, a planned

May 30, 2015 DRAFT



19

selection{r, > H, - - -, > Hy} chooses thosé/; such thatr includes;. Intuitively, the
history expressiord = {r[(,] > Hy,r[ls] > H,} is associated with a requestthat can
be resolved into eithef; or /5. The histories denoted b¥ depend on the given plan:
if = choosest; (resp./;) for r, then H denotes one of the histories representedHyy

(resp.H,). If 7 does not choose eithéy or /5, then H denotes no histories.

Certifying contracts and planning

Our planning and verification technique for services is ritbd from that of the\"™ calculus.
The interested reader can find the formal foundations of cankwin [10], [8]. Here, we only
summarize the relevant results for our present modelliaghéwork.

A static analysis over our diagrams infers judgements offthen 7 — B : 7. Roughly, this
means that the service with code has typer, and its execution histories are represented by

the history expressio®. This static analysys enjoys two fundamental results.

I 1
Correctness. Effects correctly over-approximate service run-time dnists

More formally, consider a service with code such thatH ~ B : 7. If running the service
(plugged into a network) generates a histgrthenn € [B] ([8], Th. 1).

The second property of our static analysisylse safetyWe say that an effedt is valid under
a plant when the histories denoted Wy never violate the security policies iH. Type safety
ensures that, if (statically) the effect of a serviBas valid under a planr, then (dynamically)

the planz is viable for B.

Type safety. Valid effects drive computations that never attempt sécwiblations.

More formally, consider a service with code such thatH - B : 7. If H is valid underr,
then the execution isecure(i.e. n = ® whenever a running service carries labeksnd (m, )),
and it never reachesfail  configuration. Moreover, ifr is complete (i.e. it has no unresolved
choicesr[?]) and the chosen services do not disappear, then the execotitor can be safely
kept off ([8], Th. 2).

A further result is that the validity of history expressioren be mechanically verified.
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Model-checking. Validity for history expressions is model-checkable.

The actual model-checking algorithm for the validity &f returns the set of plans under
which H is valid. Determining such viable plans is not a trivial tasideed, resolving requests
independently might not lead to a viable plan, as discuseethe introduction. Our model-
checking technique requires several preliminary stepshriieally, we firstlinearizethe history
expressionH to collect all the plans and the associated effects, whiésgmving the semantics
of H ([8], Ths. 4 and 5). The resulting history expression hasfthm of a single, top-level
planned selectior, > H; - - - m, > Hy }. We can then check eadl; independently. Firsti; is
regularizedto remove the redundant framings - - ¢[---|-- -] ([8], Th. 6). This makes possible
to construct a finite state automaton that recognizes theityabf histories ([8], Lemma 8).
This finite state automaton is then used in the actual mdustidng of /; ([8], Th. 8). If H;
model-checks, then the associated ptans viable. Summing up:

Planning = Correctness + Type Safety + Model Checking

V. PLANNING AND RECOVERING STRATEGIES

We now consider the problem of choosing the appropriateiceifor a block of requests.
While one might defer service selection as much as possibies only performing it when
executing a request, it is usually advantageous to decidettioesolve requests in advance, i.e.
to build a plan. This is because “early planning” can provi@éter guarantees than late service
selection. For instance, consider a block with two conseeutquests; andr,. It might be
that, if we choose to resolvg with a particular servicé,, later on we will not be able to find
safe choices for,. In this case we get stuck, and we must somehow escape frendaid-
end, possibly with some expensive compensation (e.g. tengca reservation). Early planning,
instead, can spot this kind of problems and try to find a betty, typically by considering
alsor, when taking a choice for,.

As seen in the previous section, a complete viable plgor a block B guarantees thaB
can be securely executed without execution monitoring,thatwe will never get stuck unless

a service mentioned in becomes unavailable. When we cannot find a complete viabfe pia
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could fall back to using an incomplete plan with unresolveduests-[?]. In this case, we get
a weaker guarantee than the one above, namely that we wiljetostuck until an unresolved
request must actually be executed.

To provide graceful degradation in our model, we also carsithe unfortunate case of
executing a requestwhen either- is still unresolved in the plan (RuleNRES), or r is resolved
with an unavailable service (Rule N/A, for Not Available). tdtionally, unavailable services
are represented as slashed boxes. Therefore, we will lao& feay to continue the execution,
possibly repairing the plan.

Figure 10 formalizes the behaviour of services related &ammhg and recovering.

« Rule DowN models an idle service becoming unavailable. For simplioite assume
that services cannot become unavailable while serving aestqUnavailable services are
modelled as slashed boxes.

« Rule Up models an unavailable service going back to the availalle st

« Rule RUB is for service publishing. The behavioural interfaceof a new service (with
code B) must be statically certified, writte® - B : 7. Note thatH = ¢ for non-initiator
services. The effect of an invoked service with type- 7, LN 7, is the latent effectd’.

« Rule N/A models a request to an unavailable service. Recaydriom this situation
demands for updating the current plan, and possibly attiydhe execution monitor. Below
in this section we shall examine some possible strategieddimg that.

« Rule UNRESs handles the case of unresolved requests. These are ddakimitarly to the
rule N/A.

. Rule RN IN describes which actions have to be taken when entering aiptablock{ B}.
Before start the execution d@?, we need to devise a plan for resolving the service requests
in B. Again, several strategies are applicable, as discusded.be

« Rule R.N OuT simply exits from a planning block. This operation affecestiner the plan
nor the execution monitor.

We now discuss some strategies for constructing or regaaiplan. As a matter of fact, no
strategy is always better than the others, since each of Hanadvantages and disadvantages,
as we will point out. The choice of a given strategy dependsnany factors, some of which
lie outside of our formal model (e.g. availability of sereg; cost of dynamic checking, etc.).

We devise four main classes of strategies:
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Fig. 10. Semantics of services in the case of dependent threaddljPart
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Greyfriars Bobby. ! Follow loyally a former plan. If a service becomes unavdéaljust

wait until it comes back again. This strategy is always saf#ough it might obviously

block the execution for an arbitrarily long time — possibbyrdver.

Patch. Try to reuse as much as possible the current plan. Replacenthailable services

with available ones, possibly newly discovered. The newises must be verified for

compatibility with the rest of the plan.

!In 1858, a man named John Gray was buried in old Greyfriars Chardtig Edinburgh. The famous Skye Terrier, Greyfriars

Bobby was so faithful to his master that for fourteen years, until his death, Bobby lay on the grave only leaving for food.

May 30, 2015

DRAFT



23

Sandbox. Try to proceed with the execution monitor turned on. The n&m pnly respects

a weak form of compatibility on types ignoring the effelt, but it does not guarantee
that contracts and security policies are always respegigthing on the execution monitor
ensures that there will not be security violations, but eiea might get stuck later on,
because of attempted insecure actions.

Replan. Try to reconstruct the whole plan, possibly exploiting nediscovered services. If
a viable plan is found, then you may proceed running with ttexetion monitor turned off.

A complete plan guarantees that contracts and securitgigslwill be always respected,
provided than none of the services mentioned in the plampdesar.

In Fig. 11, we describe the effects of these strategies irctimeext of the N/A and WRES
rules. There, we also make precise the recovered glamd the(m’, ') appearing in the rule.
For the “Greyfiars Bobby” strategy, we patiently wait for thengce to reappear; on timeout,
we will try another strategy. The Patch strategy mends theentiplan with a local fix. Note
that the Patch strategy is not always safe: in the general das impossible to change just the
way to resolve the failing requestand have a new safe plan. We shall return on this issue later
on. However, as the figure shows, in some cases this is indesgibpe, provided that the plan
with the new choice for is checked for validity. The Replan strategy is safe when talia
plan is found, but it could involve statically re-analysiagarge portion of the system. When
all else fails, it is possible to run a service under a Sandhoping that we will not get stuck.

From now onwards, we use the following abbreviations forvthgous alternatives described
in Section IlI: statelessl] / stateful (v), local (L) / global (G), first order (F) / higher-order (H),
dependent (D) / independent (I). For instance, the case IRLthe figure is the one about
independent threads, first order requests, local histosied stateless services.

In Fig. 12 we list the strategies for the rule NP IN, describing how to build a plan for a
block B. Note that, when we construct a new planwe already have a plan | 75, whererp
only plans the requests inside. We can then reuse the available informationriand 5 to
build 7’. The former plant | 75 can be non-empty when using nested planning blocks, so
reusing parts from it is indeed possible. Since we can relnseold plan, the strategies are
exactly the same of those for the N/A case.

The “Greyfriars Bobby” strategy waits fall the services mentioned in the old plan to be

available at planning time. This is because it might be wigketa start the block, if we know
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STRATEGY STATE UPDATE | CASE CONDITION
Greyfriars Bobby " all | The current planr has a choice for
IFL1 ©[H;] is valid
7| r[t] IFLw ©[H;] is valid, and/; & «
Patch : :
P IFG1 ne[H;) is valid
DFL1 ©[H;] is valid
7| r[t] _
Sandbox all The servicel; has typer — 7/
(on, @p)
/
Replan " all The new plant’ has a choice for
(off , @p)

Fig. 11. Failure handling strategies for a request .7 — 7.

that we will likely get stuck later. Instead, if some sergde=ep on being unavailable, we should
rather consider the other strategies.

As for the N/A rule, the Patch strategy is not always safewaitan still give some conditions
that guarantee the safety of the plan update, which is |lactig blockB. The Replan strategy,
instead, can change the whole plan, even for the requesssdeu?. If possible, we should
always find a complete plan. When this is not the case, we migitepd with some unresolved
requests:[?], deferring them to the N/A rule. As a last resort, when no kgitan can be found,
or when we deem Replan to be too expensive, we can adopt théd&@asttategy that turns on
the execution monitor.

We now show a situation where the Patch strategy is not saéectlsider the case IkL
case (independent threads, first order requests, localrieist stateful services). The initiator
service, in the middle of Fig. 13, performs two requestandr, in sequence. The two requests
have the same contract, and thus they can be resolved witstdteful serviceg, and/,. The
service atl, performs an evend, within a security blocky. If ¢ allows a single occurrence
of a, we should be careful and invoke the (stateful) servicat most once. The current plan

m =mr[l1] | m2[ls] is safe, since it invokes, exactly once.
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STRATEGY STATE UPDATE | CASE CONDITION
: T | 7B .
Greyfriars Bobby all The planmg has a choice for alt;
P
IFL1 [H;] is valid, for all i
Batch |l |- | IFLw | p;[H;] are valid,¢; are distinct, and all; & =
atc
) IFG1 n:pi|H;] are valid, for alli
DFL1 ©;[H;) are valid, for alli
Tl |- . ,
Sandbox all The serviced; have typer, — 7/
(on, )
nH valid undern’ , where
7! n is the current history, and
Replan all
(off, D) H approximates the future behaviour
(may need to refine the analysis)

Fig. 12. Planning strategies for a bloék involving requestseq ,.. 7; R

6127‘ Z:’T’ T‘1[Z1]|7‘2[£2} EQ:T
req r T
¢lal
req roT
m (ma, 1) U (m, @) 72 (m2, @2)

Fig. 13. An unsafe use of the Patch strategy.

Now, consider what happens if the servigebecomes unavailable. The N/A rule is triggered:
if we apply Patch and replace the current plan witf(s] | 72[(5], then this patched plan isot
viable. Indeed, the new plan invokéstwice, so violatingy. The safety condition in Fig. 11 is

false, becausé, € «: therefore, this dangerous patch is correctly avoided.
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Fig. 14. Semantics Example

An example
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rlla] | r'[l2] 4 2
req ., T act
! ¢ /\
req .7 [} B

(off,0) € €

T[ll} | r’[l2] P A€1 T[ll] | T’l[lg} 62
req .7 - g act
! ¢ /\
req 7 a B

(off,0) o (off,0) ¢

rla] [7'[l] 4 0
req .7 act

+ @ /\ a]

Teq T a B

(on,0) « €

We show in Fig. 14 a short example illustrating our serviomasatics, in the case of stateful

local histories (L Fw). The network is composed of three services: an initia@€lled/,) and

two other services/( and/;). The initiator performs two requests using the same conhtra

in this example we simply assume that both serviéesnd ¢, are compatible withr. The

servicel;, when invoked, runs some activity:t and then may perform either the evenor the

eventf. Instead,/; may performa, only. Both services run their code under a local poligy

stating that the event can be performed at most once, in the whole life of each serWicthe

initial state, all the histories are empty)(the initiator has not yet computed a pla),(and the

execution monitor is not activenff).
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We now comment on the transitions. For brevity, in Fig. 14 wenstimes compacted more
steps in a single one, as we shall point out shortly. Firde RLNIN is used to form a plan,
resolving both requestsand’. There are four possible plans, since each of the requestseca
resolved with eithe¥; or /5. Invoking ¢, twice will surely violate the policyp. Servicel; could
also invalidate the policy if the « branch is taken in both invocations: our static machinery, t
err on the safe side, assumes this worst-case situationasider invokingl; twice as unsafe.
So, the only viable plans are/,] | r'[¢5] andr[ly] | '[¢;]. In the figure we choose the first plan.
In the second transition we simply use rule@®and invoke/;. Then many transition rules are
applied: we enter the security block with rule@N; we runact with rule Xip; we choose
the o branch with rule £Q; we run a with rule Ev; we finally exit the security block with
rule SEcOUT. The eventa is therefore recorded in the history éf. Finally, we can return
to ¢y using rule RET. Here, we show what happens if serviGebecomes unavailable through
rule DowN. To run request’ we can not use rule By, but instead we can apply rule N/A
and try to recovery from the failure of,. We then apply the Sandbox strategy. We turn on
the execution monitor, and fix the plan so thatesolves to some available service compatible
with 7: in the example/,. Doing this, we shall run again serviée. If the service will attempt
to perform anothery, this will be prevented by the execution monitor. If insteadvill choose

the 5 branch, it will complete successfully.

VI. SCENARIOS FOR SECURE SERVICE COMPOSITIONS

To illustrate some of the features and design facilities enachilable by our framework, we
consider two small case studies. First, we consider a cairrepenario, where a car may break
and then request assistance from a tow-truck and a garagesdd¢ond scenario is about an

embedded computational device that wants to delegate gxeaf mobile code.

A. Car repair

In this scenario, we assume a car equipped with a diagnga&tiera that continuously reports
on the status of the vehicle. When the car experiences sonue fagijire (e.g. engine overheating,
exhausted battery, flat tyres) the in-car emergency sersitevoked to select the appropriate

tow-truck and garage services. The selection may take stoumt some driver custom policies,
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and other constraints, e.g. the tow-truck should be closegmnto reach both the location where
the car is stuck and the chosen garage.

The main focus here is not on the structure of the overalesystrchitecture, rather on how to
design the workflow of the service orchestration, taking iatcount the specific driver policies
and the service contracts on demand.

The system is composed of three kinds of services:CthR-EMERGENCY service, that tries
to arrange for a car tow-trucking and repair, thew-TRUCK service, that picks the damaged
car to a garage, and th@ARAGE service, that repairs the car. We assume that all the ingolve
services trust each other’s history, and so we assume adspkneal history, with independent
threads. We also design all the services to be stateful,atp etg. the driver can customize the
choice of garages, according to past experiences.

We start by modelling th€ AR-EMERGENCY, i.e. the in-vehicle service that handles the car
fault. This service is invoked by the embedded diagnosigesyseach time a fault is reported.
The actual kind of fault, and the geographic location whdre tar is stuck, are passed as
parameters — namef andloc. The diagram of th&€ AR-EMERGENCY service is displayed on
the left-hand side of Fig. 15.

Fault x Location — Bool
s N

©BL [ ., wr(loc) .
req ., void —— void Ay (@)

req . void M void

repair ok ?

N\ ol

[yes] | asmL

s

Fig. 15. TheCAR-EMERGENCY service and the black-listing policys. .

The outer policypg; (black-list) has the role of enforcing a sort of “quality oérgice”

constraint. TheCAR-EMERGENCY service records in its history the list of all the garagesduse
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in past repair requests. When the selected gafggeompletes repairing a car, it appends to
the history its own signaturegn({s). When the user is not satisfied with the quality (or the
bill") of the garage, the garage is black-listed (evept,). The policy g, ensures that a black-
listed garage (marked by a signatusg: (/) followed by a black-listing tagvz;) cannot be
selected for future emergencies. The black-listing paligy is formally defined by the template
security automaton in Fig. 15, right-hand side. Note thahesdabels inpz; are parametric:
sgn(z) and sgn(z) stands respectively for “the signature of garageand “a signature of any
garage different fromx”, where z can be replaced by an arbitrary garage identifier. If, stgrti
from the stateyy, a garage signaturgn(x) is immediately followed by a black-listing tagg;,,
then you reach the stage. Fromg,, an attempt to generate agaim (x) will result in a transition

to the “offending” sink statey;. For instance, the historygn(¢,)sgn(¢2) apr, - - - sgn(fy) drives
the automatom,,, ,) to the stateys, thus violating the policypp;..

The crucial part of the design is the planning block. It cordawo requests: for the tow-
truck, andrq for the garage. The contragt, (loc) requires that the tow-truck is able to serve
the locationloc where the car is broken down. The contragt(fit) selects the garages that can
repair the kind of faultgit. The planning block has the role of determining the orclagisin plan
for both the requests. In this case, it makes little sensemdirtue executing with an incomplete
plan or with sandboxing: you should perhaps look for a cataleservice, if either the tow-truck
or the garage are unavailable. Therefore, a meaningfuhpigrstrategy is trying to find a couple
of services matching both; andrs, and wait until both the services are available.

The diagram of therow-TRUCK service is displayed in Fig. 16, on the left. The service
will first fire the eventinity, to signal starting of execution, and then it will expose tisé
of geographic locationgIPq,...,ZIP; it can reach. Each zip codgIP; is modelled as an
event. The computation then branches, according to whétkeee are any available trucks. This
is rendered as a basic activity with two outgoing edges. Tdreract o, (loc) imposed by the
CAR-EMERGENCY service ensures that the locatibm is covered by the truck service. Formally,
v (loc) checks if the zip codéoc is contained in the interface of the tow-truck service (watom
the automaton forp, (loc) here). Then, thaeow-TRUCK may perform some internal activities
(irrelevant in our model), possibly invoking other intelsarvices. The exposed interface is of

initp-ZIPq - ZIP),
—>

the form void void.

The GARAGE service (Fig. 16, center) exposes the kinds of fabkli,, . . ., REP,, the garage
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REP;---REPy,-sgn({g)

U1 : void w void la : void void
s N s N
it wcz[
\L REPl
7IP1 i
ZIPy
REP,
available trucks ?
[yes] [no] sgn(te)
@
N J N J

Fig. 16. TheTtow-TRUCK (left) and GARAGE (right) services, and the Garage-Zip poligy; z

can repair, e.g. tyres, engine, etc. The request contragftt) ensures that the garage can repair
the kind of fault fit experienced by the car. THRARAGE service may perform some internal
bookkeeping activities to handle the request (not showrhénfigure), possibly using internal
services from its local repository. After the car repair baen completed, the garage signs a
receipt, through the evenyn (/). This signature can be used by therR-EMERGENCY service

to implement its black-listing policy.

The GARAGE service exploits the policy (for Garage-Zip, see Fig. 16, right) to ensure that
the tow-truck can reach the garage address. Assume theegarémrated in the area identified
by ZIP.. Then, the policypysz checks that the tow-truck has exposed the evdi; among
the locations it can reach. The eventit; ensures that only the last invocation of thew-
TRUCK service is considered. For instance, the histeiy, Z1P, initr Z1P g, Z1Ps Z1P, obeys
vz (recall that the instantiation of template security autamadds the self-loops fdtIP,
and ZIP,, and that the final states are actually the offending ones)enAtioth the contract
vr(loc) and the policyyq, are satisfied, we have the guarantee that the tow-truck cintipe
car and deposit it at the garage.

In Fig. 17, we show a system composed by one &a{z, two TOW-TRUCK services/ ;
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Lr1 L2
nitp it
\L ZIPpr
ZIPfpy, ¢
\L ZIPs;
ZIPp ¢
ZIPLu
available trucks ? available trucks ?
[yes] [no] [ves] [no]
lre LLu
waz(FL) [ vz (LU) [
REPtyrss REPengme
REPpattery REP tyres
sgn(Lrr) sgn(€ru)
® ®

Fig. 17. TheCAR-EMERGENCY client ((car), two tow-truck services1, {r2), and two garagesfr,lru).-

and/r, and tWOGARAGE service¥r;, and/;;;. The car has experienced a flat tyres accident in

Pisa ZIPp;), and it has black-listed the garage in Lucca, as recordétkihistorysgn(LU) apy.

The tow-truck servicé,; can reach Florence and Pisa, while covers three zones: Pisa, Siena

and Lucca. The garagé-; is located in Florence, and it can repair tyres and battetles

garagel,; is in Lucca, and it repairs engines and tyres.

We now discuss all the possible orchestrations:

. the planrr[lr1] | re[lry] is not viable, because it violates the poligy;z(LU). Indeed,

the tow-truck can serve Florence and Pisa, but the garageaseld in Lucca.

. similarly, the planrr[(rs] | r¢[¢rL] violatespaz(FL).

. the planrr[lrs] | rq[lry] is not viable, because it violates the black-listing policy;. .

Indeed, it would give rise to a historygn(LU) apy, - -- sgn(LU), not accepted by the
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automaton in Fig. 15.
. finally, the planry[¢r1] | r[¢rL] is viable. The tow-truck can reach both the car, located

in Pisa, and the garage in Florence, which is not blackeiste

B. Remote code execution

Consider the scenario depicted in Fig. 18. Assume that tleatchit site/, is a device with
limited computational capabilities, wanting to executensacode downloaded from the network.
To do that, the client issues two (higher order) requestsguence, the first one to obtain a piece
of mobile code (e.g. an applet), and the second one to dispistexecution to another service.
The sites/; and /¢, are the available code providers, whilg and ¢, are the code executers.
Modelling this scenario requires enriching our graphicatiation with some extra features, e.g.
parameter passing and higher-order services. In Fig. 18hat riefly introduce the needed

notation. A more formal treatment can be obtained by usimgciculus\™? [12].

2
Ly [(fun x) sgn(l1) — eos[ -+ — read] }
)

( ) 05

f = (req . Int — (Int — Int))() [(fun x) sgn(la) — read — --- — write

$ b

(req ,,(Int — Int) — Bool)(f) [Sgn(gS) S = oewlfO] - ]

L Y, ly

[sgn(£4)—>a1—>~-—>f()—>-~ }

Fig. 18. One client4p), two code providers/(, ¢2), and two code executorgs( £4). To deal with higher order, we introduce
some extra notation. Passing a paramgtéo a service invoked through a requesis denotedeq ,.7(f). A service returning

a function that takes as input a parameteaind then evaluates the bloék is denoted(fun z) B.

The request labelled, asks for some code, and it can be served by two code provitiéfs a
and/,, both stateless and with local histories. The request fype— (Int — Int) means that,
upon receiving a value of typét, the invoked service replies with a function fromt to Int,

with no security constraints.
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The service at; returns a “one-shot” function that can be used only oncehihe function
body, the only security-relevant operations are writing $brvice signatures¢n(¢,)) and reading
(read) on the file system where the delivered code is run. The pglisy ensures that the code
is one-shot. To do thatyos permits using the function in stateful sites only, and thezvents
the eventsgn(/,) from being executed twice (see the template security autmma, ) in
Fig. 19, right). We assume that a service declares that patp stateful execution by emitting
the evento,,, while the eventn; is for stateless services. The code provided/pyirst reads
(read) some local data, and eventually writes them bagkife) to /5.

Since {;, is assumed to have a limited computational power, the cpdebtained by the
request-; is passed as a parameter to the service invoked by the requdstis request can be
served by eithefs or /4, both with local histories. The service &tis stateful ¢.,), and it runs
the provided cod¢g under a “Chinese Wall” security policycw, requiring that no data can be
written after reading them (seé,_, in Fig. 19, left). The service at, is statelessd;), and it

simply runs the cod¢g, with no security constraints.

PoSs(x)

Fig. 19. The Chinese Wall policycw (left) and the one-shot policyos(z) (right).

The types inferred for the services are shown in Fig. 20. Retance, the type of; is a
polymorphic function that, when applied to a function witHagent effecth (whereh is an
effect variable, to be bound to a history expression), witiduce a value of typéool, and a
history in the semantics ofyn(/s) - a,, - wcwlh].

The abstract behaviour of the whole network of servicesasetiore rendered by the following
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(€1)-pos|[read)

0 : Int — (Int 222 Int)

’ (funx) sgn(€1) — pos|- - - — read]
0

sgn (€2 )-read-write

Uy Int — (Int > Int)

f=(req ,,Int — (Int — Int))() fﬁ[(ﬁm x) sgn(ly) — read — - -+ — write ]

$ O3 : (Int LN Int) %gn(ﬁg)'%wcmh] Bool

(req rg(Int - Int) - BOOl)(f) _’/{ sgn(ﬁg) oy, > (PCW[f()] .
N\ J Ly (Int N Int) SCUACORISING
sgn(ly) o — - = f() = -

Fig. 20. One client, four services, and their certified published intesface

history expressior:

{ralls] > l3 : sgn(ls) - a, - pewl[{ri[l1] > sgn(€y) - pos[read], ri[ls] > read - write}]
rolly] > Ly 2 sgn(ly) - aq - {r1[l1] > sgn(y) - pos|read], r1[ls] > read - write}}

The intuitive meaning ofH is that, under the plam;[¢s], i.e. if ro is served by/s, the
eventssgn(¢3;) and «,, are generated at sitg, followed by a security blockocw. This block
wrapssgn({y) - pos|read] if ¢ is chosen fory, or read - write if {5 is chosen instead. Otherwise,
if ro is served by, then the behaviour (on sitg) depends on the former choice for. If /;
was selected, thesyn(¢;)- pos|read], otherwiseread - write. Note also that no event is generated
by the client at sit¢/,.

The presence of higher order requests makes non-trividysing H to find if there is any
viable plan. The problem is that the effect of selecting aegiservice for a request is not
confined to the execution of that service. The history geerdravhile running a service may
later on violate a policy that will become active after theveee has returned. Since each service
selection affects th&hole execution of a program, we cannot simply devise a viable pkan

looking at local requests constraints, only.
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In our example, we find thall is equivalent to the following’:

H' = {ri[01] [ r2[ls] > 5 = sgn(ls) - aw - pow(sgn(lr) - pos[read]],
r1[ls] | o[ls] > 4y : sgn(ly) - aq - sgn(ly) - read - write,
rilla] | rolla] > €y 2 sgn(ly) - on - sgn(ly) - pos|read],
r1[ls] | To[ls] > 5 sgn(ls) - oy, - wew[sgn(ls) - read - write]}

Every element ofH’ clearly separates the plan from the associated abstraavioein This
piece of behaviour has no further plans within, and so it Hashe information needed to

model-check its validity. E.g., under the plan¢,] | r»[¢5], the abstract behaviour at sitg is:
sgn(l3) - oy, - pew[sgn(l1) - pos|read]]

There are then four possible plans for the executioify] | ro[¢s], 71[¢1] | r2[la], 71[la] | T2[¢5],
andr (5] | m2[ls]. The planr [(y] | ro[¢3] is not viable, because it would drive a computation
aborted by the execution monitor at sifg. The monitor aborts the execution just before
generating the eventrite, because the historyyn(¢3) av, sgn(ls) read write (local at¢s) would
violate the Chinese-Wall policycw. The planr [¢4] | r2[¢4] is not viable, too. Indeed, the history
sgn(ls) ay sgn(fy) at £, violates the policypos(,) (recall thatpos prevents the code provided
by ¢, from being executed by stateless services). There are twiloefuplans to consider, i.e.
r1[l1] | ro[€3] andri[ls] | r2[€4]. These plans are judged viable by our static analysis, aiekh
they drive executions that never fail.

Summing up, we have inferred the overall effédét we have transformed it into a simple
planned selectioqr; > H; ---m; > Hy}, and we have model-checked the validity of tHe
The plansr; associated with the validi; safely drive the execution, without resorting to any

run-time monitor.

VIlI. CONCLUSIONS AND RELATED WORK

We have introduced a UML-like graphical language for designand verifying security
policies of service-oriented applications. The distirstpeid feature of our modelling framework
is that it provides high-level constructs (e.g. call-byrtract) abstracting from the underlying
middleware for service programming and deploying. We tedkhe problem of modelling and

verifying properties of service orchestration in the preseof security constraints. Our main
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result is a semantic-based methodology for synthesiziagkkleton structure of the orchestration
engine. The orchestration plan details which services tbhestrator engine has to choose in
order to complete the original task, while obeying the si&gpolicies on demand. Here, we dealt
with security policies, but our methodology can be applediandle a variety of non-functional
safetyconstraints.

We envisage the impact of our approach on the service priogtack as follows. First, our pro-
posal requires extending services description langudgessdes the standard WSDL attributes,
service description includes information about servickaveur. Moreover, the call-by-contract
invocation mechanism adds a furti@anninglayer to the standard service protocol stack. This
layer provides the orchestrator with the plans guarangeéuat the relevant services always
respect the required properties. The trustfulness of thanphg layer and of the orchestrator
follows from our formal approach, in particular from the adness of the type and effect system,
and the correctness of planning and of verification [8].

Another feature offered by our framework is that of mappimghHevel service descriptions
into more concrete™? programs. This can be done with the help of simple model toamsation
tools. Such model-driven transformation would requireyvieitle user intervention. Typically,
the user just needs t@) make the argument passing and return values explicit, egprdting
the diagram with variables, an@di) annotate conditional branches with the proper guards.
Transforming the diagram into a™? program can instead be performed in a completely au-
tomated way, e.g. by implementing diagram loops throughrseee functions, available in™? .
This model transformation would allow one to reuse all tki¢ tools, including its static
machinery, and therefore to rapidly build a working propmyof a service-based application. As
usual, a prototype can help in the design phase, becauseaongecform tests on the system,
e.g. by providing as input selected data, one can observéhehthe outputs are indeed the
intended ones. IM\™, this standard testing practice can be more effective byodi the
call-by-contract mechanism. For instance, one can perfarnequest with a given policy
and observe the resulting plans. This makes the systemdeoradi the services that satisfy,
and the observed effect is similar to runninglassof tests. To make a concrete example, a
designer of an online bookshop can specify a policy such adefoa book without paying”
and then inspect the generated plans: the presence of yakle could point out an unwanted

behaviour, e.g. due to an unpredicted interaction betwéteht special offers. Standard testing
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techniques are not sophisticated enough to spot such kifdigg. Thus, a designer may find
the \™ prototype useful to check the system correctness, sinaganded plans provide him

with a clear description of the unwanted interactions betwservices.

Related work

Several approaches have been developed to support veoifiait service-oriented systems.
For example, dynamic bisimulation-based techniques haes adopted to analyse the consis-
tency between orchestration and choreography of servi&EHs [22], while state-space analysis
has been exploited to check correctness of service oreliestr{31]. Our approach allows for
synthesizingand checking the correctness of the orchestrastatically.

Process calculi techniques have been used to formalize \&lelic8s standards (see e.g. [28],
[18], [35], [37], [23]). A different approach is Cook and M#ss Orc [38], an abstract program-
ming model for structured orchestration of services. Wehise authentication has been recently
modelled and analysed in [14], [15] through a process cafceanriched with cryptographic
primitives. The main difference of these approaches witts stands on the level of abstraction.

Technically, the work of Skalka and Smith [44] is the clogesbur framework. We share with
them the use of a type and effect system and that of model cigeeoklidity of effects (they
handle history-based access control). A related line addaieh addresses the issue of modelling
and analysing resource usage. lgarashi and Kobayashi @®duce a type systems to check
whether a program accesses resources according to a diseddesage policy. Our model is less
general than the framework of [36], but we provide a statifieation technique [9], while [36]
does not.

From a software engineering perspective, the advent ofceenoriented applications has led to
the development of higher level modelling languages whicly ocus on the service interfaces
and orchestration (business) logic and abstract from tlieenlying programming middleware.
A well known example is provided by the Service Component Aecture (SCA) [24]. This
framework aims at simplifying implementations, by allogidesigners to focus on the business
logic only while complying with existing standards. Our apgch complements the SCA view
providing a full-fledged mathematical framework for designand verifying properties of service
assemblies. It would be interesting develop a (model-faamsation) mapping from our formal

framework to SCA.
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Also related to our approach is the work on SRML [29], a higrelecore language, inde-
pendent from the underlying programming middleware. SRMk hamathematical semantics
providing a basis for verification and offers both synta@id behavioural service interfaces.
The logic for the specification of behavioural propertiesefvices is still under development.
The interconnections between services are specified inlardéee style, but they are not driven
by the properties of a contract as it is our proposal.

Finally, there are several UML extensions, calléML profiles dealing with services. Here,
we mention the UML profile for BPEL [33], the UML profile for loAginning transactions [50],
and the UML profile forA\™? [39]. Our graphical design notation basically provides tio¢ion
of activity diagram for this UML profile.
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