
1

Semantics-based design

for

Secure Web Services

Massimo Bartoletti Pierpaolo Degano Gian Luigi Ferrari Roberto Zunino

bart@di.unipi.it degano@di.unipi.it giangi@di.unipi.it zunino@di.unipi.it

Dipartimento di Informatica

University of Pisa

L.go Bruno Pontecorvo, 3 - 56127 Pisa, Italy

Phone +390502212700 Fax +390502212726

May 30, 2015 DRAFT

2

Abstract

We outline a methodology for designing and composing services in a secure manner. In particular,

we are concerned with safety properties of service behaviour. Services can enforce security policies lo-

cally and can invoke other services that respect given security contracts. This call-by-contract mechanism

offers a significant set of opportunities, each driving secure ways to compose services. We discuss how

to correctly plan services compositions in several relevant classes of services and security properties. To

this aim, we propose a graphical modelling framework, basedon a foundational calculus calledλreq [13].

Our formalism features dynamic and static semantics, so allowing for formal reasoning about systems.

Static analysis and model checking techniques provide the designer with useful information to assess

and fix possible vulnerabilities.

Index Terms

Web services, call-by-contract, language-based security, static analysis, system verification.

I. I NTRODUCTION

Service-oriented computing (SOC) is an emerging paradigm todesign distributed applica-

tions [42], [41], [25]. SOC applications are obtained by suitably composing and coordinating (i.e.

orchestrating) available services. Services are stand-alone computational units distributed over a

network, and made available through standard interaction mechanisms. Composition of services

may require peculiar mechanisms to handle complex interaction patterns (e.g. to implement

transactions), while enforcing non-functional requirements on the system behaviour, like e.g.

security, availability, performance, transactionality,quality of service, etc. [46]. An important

aspect is that services areopen, in that they are built with little or no knowledge about their

operating environment, their clients, and further services therein invoked. Web Services [2], [45],

[48] built upon XML technologies are possibly the most illustrative and well developed example

of the SOC paradigm. A variety of XML-based technologies have been devised for describing,

discovering and invoking web services [17], [19], [16], [49]. There are also several standards

for defining and enforcing non-functional requirements of services, e.g. WS-Security [4], WS-

Trust [3] and WS-Policy [47] among others.

The success of the SOC paradigm is highly related to the development of network infras-

tructures supporting interoperable and secure messaging among services, as well as high-level

May 30, 2015 DRAFT

3

coordination standards. A further element is the definitionof novel methodologies for modelling,

analysing and certifying SOC systems, see e.g. [26]. A challenging issue for SOC research is how

to compose existing services into more complex ones, also byproperly selecting and configuring

services so to guarantee that their composition enjoys somedesirable properties. Non-functional

aspects, e.g security, make service composition even harder.

From a methodological perspective, Software Engineering should facilitate the shift from

traditional approaches to the emerging service-oriented solutions. Along these lines, one of the

goals of this paper is to strenghten the adoption of formal techniques for modelling, designing and

verifying SOC applications. In particular, we propose a SOCmodelling framework supporting

history-based securityandcall-by-contract.

The starting point of our work isλreq [13], [8], a foundational calculus for describing, selecting

and securely composing services. The execution of a programmay involve accessing security-

critical resources; these actions are logged into histories. The security mechanism may inspect

these histories, and forbid those executions that would violate the prescribed policies. The call-by-

contract selection mechanism implements a matchmaking algorithm based on service behaviour.

This algorithm exploits static analysis techniques to detect the plans for resolving the call-by-

contract involved in a service orchestration.

In our modelling framework, services are rendered as typed diagrams. Service interfaces extend

the WSDL interfaces: besides the standard WSDL attributes, weadd semantic information about

service behaviour. In our model, the published interface ofa service is an annotated functional

type, of the formτ1
H
−→ τ2. Intuitively, when supplied with an argument of typeτ1, the service

evaluates to an object of typeτ2. The annotationH is a sort of context-free grammar that

describes all the possible run-time histories of the services. Thus,H can be exploited to constrain

the selection of a service that respects the desired security properties. Service interfaces are

mechanically inferred by a type and effect system.

To select a service that matches a given contract, a client issues a request of the formreq rτ .

A request typeτ = τ1
ϕ
−→ τ2 matches those services with interfaceτ1

H
−→ τ2 whose abstract

behaviourH respects the policyϕ. These services are guaranteed to respectϕ in all the possible

executions.

The selection algorithm searches aservice repositoryfor an interface matching the request

type. Since service interactions may be complex, it might bethe case that a local choice for

May 30, 2015 DRAFT

4

a service is not secure in a broader, “global” context. For instance, choosing a low-security e-

mail provider might prevent you from using a home-banking service that exchanges confidential

data through e-mail. In this case, you should have planned the selection of the e-mail and bank

services so to ensure their compatibility. To cope with thiskind of issues, we define a static

machinery that determines theviable plansfor selecting services that respect all the contracts,

both locally and globally.

The main contributions of the present paper are the following:

1) a formal modelling language for designing secure services. Our graphical formalism resem-

bles UML activity diagrams, and it is used to describe the workflow of services. Besides

the usual workflow operators, we can express activities subject to security constraints. The

awareness of security from the early stages of development will foster security through

all the following phases of software production. Our diagrams have a formal operational

semantics, that specifies the dynamic behaviour of services. Moreover, diagrams can be

statically analysed, to infer the contracts satisfied by a service. Our approach allows for

a fine-grained characterization of the design choices that affect security (Section II). We

support our proposal with some case study scenarios.

2) the integration of a verification technique to study composition properties of service

networks. A static analysis is used to infer an abstraction of the behaviour of a network.

This abstraction is then model-checked to construct a correct orchestrator that coordinates

the running services in a secure manner. Secure orchestration will also allow for improving

the overall performance by avoiding unnecessary dynamic security checks while executing

services. Studying the output of the model-checker may highlight possible design flaws,

and suggest how to revise the calls-by-contract and the security policies. All the above

machinery is completely mechanizable, and we are implementing a tool to support our

methodology. The fact that the tool is based on strong theoretical grounds (i.e.λreq type

and effect inference and verifier) positively impacts the reliability to our approach.

3) a study of various planning and recovering strategies. Wediscuss several situations in

which one needs to take a decision before proceeding with theexecution. For instance,

when a planned service disappears unexpectedly, one can choose to replan, i.e. to adapt the

current plan to the new network configuration. Depending on the boundary conditions and

on past experience, one can choose among different tactics.We comment on the feasibility,

May 30, 2015 DRAFT

5

advantages and costs of each of them.

The paper is organized as follows. In Section II we introducea taxonomy of security aspects

in service-oriented applications. Section III, IV and V present our formal model. In particular,

Section III introduces our design notation and the operational semantics; Section IV presents

service contracts, and outlines how they can be automatically inferred; Section V illustrates

how to select services under the call-by-contract philosophy, and discusses some planning and

recovering strategies. Two scenarios for secure service composition are presented in Section VI.

We conclude the paper with some remarks (Section VII) about the expected impact of our

methodology on Software Engineering, and we discuss some related works.

II. A TAXONOMY OF SECURITY ASPECTS INWEB SERVICES

Service composition heavily depends on which information about a service is made public,

on how to choose those services that match the user’s requirements, and on their actual run-time

behaviour. Security makes service composition even harder. Services may be offered by different

providers, which only partially trust each other. On the onehand, providers have to guarantee

that the delivered service respects a given security policy, in any interaction with the operational

environment, and regardless of who actually called the service. On the other hand, clients may

want to protect their sensitive data from the services invoked.

In the history-basedapproach to security, the actual access rights of a running piece of code

depend on (a suitable abstraction of) the execution historyof all the pieces of code run so far.

This approach has been receiving major attention, both at the level of foundations [5], [30], [44]

and of language design and implementation [1], [27].

The observations of security-relevant activities, e.g. opening socket connections, reading and

writing files, accessing critical memory regions, are called events. Histories are sequences of

events. The class of policies we are concerned with is that ofsafetyproperties of histories, i.e.

properties that are expressible through finite state automata. The typical run-time mechanisms

for enforcing history-based policies arereference monitors, which observe program executions

and abort them whenever about to violate the given policy. Reference monitors enforce exactly

the class of safety properties [43].

Since histories are the main ingredient of our security model, our taxonomy speaks about how

histories are handled and manipulated by services. We focuson the following aspects.

May 30, 2015 DRAFT

6

Stateless / stateful services

A stateless service does not preserve its history across distinct invocations (yet it checks the

history within each invocation). Instead, a stateful service keeps track of the histories of all the

past invocations. Steteless services can enforce policiesthat inspect the history of the current

invocation only, e.g. resource usage control. Stateful services allow for more expressive security

policies: for instance, a stateful service can bound the number of invocations on a per-client basis,

while a stateless service cannot. More in general, statefulservices can exploit their histories to

record security-relevant information about the state of client sessions. Consider for instance a

service that requires password authentication, and that gives only three chances per hour to

authenticate. This can be modelled as a stateful service. Inthis case the history keeps track

of the number of failed authentication attempts. The security policy prevents the service from

being used by a caller for which the history has recorded three failed authentication attempts

in the last hour. Although stateless services admit security policies that are less expressive than

those of stateful services, static analysis can usually infer enough information to ensure secure

composition. For instance, consider a client that wants to buy some pharmaceuticals through an

online vendor, while being assured that his shopping list isnot leaked to other services (e.g.

insurance companies). Statically analysing pharmacy services permits to match the client with

a service conforming to its requirements. This is because the information recorded in stateless

histories is enough to show possible leaks.

Local / global histories

Local histories only record the events generated by a service locally on its site. Instead, a

global history may span over multiple services. Local histories are the most prudent choice when

services do not trust other services, in particular the histories they generate. In this case, a service

only trusts its own history — but it cannot constrain the pasthistory of its callers, e.g. to prevent

that its client has visited a malicious site. Global histories instead require some trust relation

among services: if a service A trusts B, then the history of A may comprise that of B, and so A

may check policies on the behaviour of B. For instance, consider an alliance of services trusting

each other, that wish to implement a distributed black-list. More in detail, when any of the

services in the alliance black-lists (through a suitable event in the history) an external service,

then all the alliance must abstain from invoking that external service. This can be implemented

May 30, 2015 DRAFT

7

by making the services in the alliance share a global history. Before invoking an external service,

the caller inspects the global history to find whether it has been black-listed beforehand. Note

that the trust relationship among the services in the alliance is crucial: even a single untrusted

service could compromise the security of the alliance, by maliciously modifying the global

history. To securely implement the global history, i.e. to protect its integrity, communication

between services is done through suitable cryptographic protocols. These protocols must be

designed to be coherent with the existing trust relationship, e.g. signed histories are considered

reliable only if the signer is trusted [51].

First order / higher order requests

A request typeτ
ϕ
−→ τ ′ is first order when bothτ and τ ′ are base types (Int , Bool , etc.).

Instead, ifτ or τ ′ are functional types, the request is higher order. In particular, if the parameter

(of type τ) is a function, then the client passes some code to be possibly executed by the

requested service. Symmetrically, ifτ ′ is a function type, then the service returns back some

code to the caller. Mobility of code impacts the way histories are generated, and demands for

particular mechanisms to enforce security on the site wherethe code is run. A typical protection

mechanism issandboxing, that consists in wrapping code within an execution monitorthat

enforces a given security policy. When there is no mobile code, more efficient mechanisms can

be devised, e.g. local checks on security-critical operations. For instance, Java Applets are mobile

code applications running on the client browser, and they can be invoked through higher order

requests. A browser calls a service that returns an applet; the browser runs then the applet, while

enforcing its own security policy, e.g. the standard Java sandboxing. Actually, history-based

security is more general than Java, since it checks theall the past execution history, while Java

only checks the frames in the call stack [34]. Higher order requests also allow a client to pass

some mobile code as a parameter to a service. The execution ofthat code can be constrained

both by the client and by the service, by suitable policies imposed on its execution.

Dependent / independent threads

In a network of services, several threads may run concurrently and compete for services.

A thread is a computation started from a particularinitiator service in the network. Roughly,

initiator services are those delegated by the active actorsto attain a given goal. Independent

May 30, 2015 DRAFT

8

threads keep execution histories separated, while dependent threads may share part of their

histories Therefore, dependent threads may influence each other when using the same service,

while independent threads cannot. Implementing independent threads requires that each service

records the history of each thread that invoked that service, i.e. services actually maintain a

mapping from thread initiators to their histories. For instance, consider a service that can be

invoked only once. If threads are independent, this “one-shot” service has no way to enforce

single use. It can only check that no thread uses it more than once, because each thread keeps

its own history. Dependent threads are necessary to correctly implement the one-shot service.

III. SERVICES

The basic entity in our graphical formalism is that ofservice. We shall first describe the

syntax of services, and then study how they behave when plugged into a network. A service

is represented as a box containing its code. The four cornersof the box are decorated with

information about the service interface and behaviour. Thelabel ℓ : τ indicates thelocation ℓ

where the service is made available, and its certified published interfaceτ (discussed later on

in Section IV). The other labels instead are used to represent the state of a service at run-time.

service locationℓ + interfaceτ

orchestration plan

event history

service code

monitor flagm + sequenceΦ of active policies

ℓ : τ

π

(m,Φ)

η

B
η

ℓ : τ π

(m,Φ)

B

Fig. 1. Execution state of a service.

The labelη is an abstraction of the service executionhistory. In particular, we are concerned

with the sequence of security-relevant events happened sometimes in the past, in the spirit

of history-based security [1]. The label(m,Φ) is a pair, where the first element is a flagm

representing the on/off status of the execution monitor, and the second element is the sequence

ϕ1 · · ·ϕk of active security policies. The monitor must check that services adhere to each

policy ϕi, for i ∈ 1..k, when the flag is on. Security policies are modelled as regular properties

May 30, 2015 DRAFT

9

of event histories, i.e. properties that are recognizable by a finite state automaton. Although

the soundness of our design and analysis techniques does notdepend on the logic chosen for

expressing regular properties of histories, we find it convenient to express policies through our

template security automata(see below).

The labelπ is the plan used for resolving service choices. A plan formalises how a call-

by-contractreq rτ is transformed into a call-by-name. Plans may come in several different

shapes [11]. Here we focus on a very simple form of plans, i.e.mappings from request labelsr

to service locationsℓ. We represent plans with the syntax defined in Fig. 2.

π, π′ ::= 0 empty

r[ℓ] service choice

r[?] unresolved choice

π | π′ composition

Fig. 2. Syntax of plans.

The empty plan0 has no choices; the planr[ℓ] associates the service published at siteℓ with

the request labelledr. A plan iscompletewhen it has no unresolved choices. Composition| on

plans is associative, commutative and idempotent, and its identity is the empty plan0. Since

plans are functions, they have a single choice for each request, i.e.r[ℓ] | r[ℓ′] implies ℓ = ℓ′.

The labelB inside the box is ablock that describes the workflow behaviour of the service,

in particular of the security-relevant activities. Formally, B it is a control flow graph [40] with

nodes modelling activities, and arrows modelling intra-procedural flow. The syntax of activities

and flow graphs are defined in Fig. 3, while Fig. 4 summarizes the relevant syntactic categories.

Activities comprise basic activities, events, requests, security blocks, and planning blocks.

• A basic activitya is an internal computation that does not affect security-critical objects.

For instance, evaluating a boolean or arithmetic expression are basic activities.

• An eventα(o) abstracts from a security-critical actionα performed on an objecto. For

instance,write(foo) for writing the file foo, sgn(ℓ) for a certificate signed byℓ, etc. We

simply writeα when the target object is immaterial.

• A service requesttakes the formreq rτ . The labelr uniquely identifies the request in a

May 30, 2015 DRAFT

10

A ::= activities

a basic activity

α(o) event

req rτ request

ϕ[B] security block

{B} planning block

B = (N,Λ,→) service flow graph

where N finite set of nodes

Λ : N → A labelling function

→ ⊆ N ×N set of arrows

Fig. 3. Syntax of services.

network of services, and the request typeτ is defined by:

τ ::= b | τ
ϕ
−→ τ

whereb is a base type (Int ,Bool , void , . . .). The annotationϕ on the arrow is the query

pattern (or“contract”) to be matched by the invoked service. For instance, the request type

τ
ϕ
−→ τ ′ matches services with functional typeτ −→ τ ′, and whose behaviour respects the

policy ϕ.

• A security blockϕ[B] annotatesB with the policyϕ, with the intention thatϕ must be

obeyed while runningB. This can be accomplished by enabling the execution monitor, that

checks the history againstϕ at each step of the execution ofB. We shall see later on a static

analysis of services that will allow to turn off the execution monitor, while guaranteeing

that the policyϕ is obeyed.

• A planning block{B} constructs a plan for the execution ofB (see Section V for more

details on how this is accomplished).

Both kinds of blocks can be nested, and they determine the scope of policies (hence called

local policies[7]) and of planning.

Service flow graphsB = (N,Λ,→) are directed graphs, whereN is the (finite) set of nodes,

Λ is a function that maps nodes to activities, and→ is the set of arrows. Note that loops are

May 30, 2015 DRAFT

11

o, o′, . . . ∈ Obj Objects (a finite set)

α, α′, . . . ∈ Act Actions (a finite set)

α(o), . . . ∈ Ev = Act × Obj Events

η, η′, . . . ∈ Ev∗ Histories (finite sequences of events)

ϕ, ϕ′, . . . ∈ Pol Policies (regular properties of histories)

r, r′, . . . ∈ Req Request labels

ℓ, ℓ′, . . . ∈ Loc Service Locations

π, π′, . . . ∈ Req → Loc Plans (functions fromReq to Loc)

Fig. 4. Syntactic categories.

permitted in flow graphs, to model iterative computations. We assume that each graph has a

single entry node, and a single exit node.

This graphical formalism is based onλreq , a call-by-valueλ-calculus enriched with local

security policies and call-by-contract service requests.Since our main focus is on secure com-

position, in the graphical model we do not render all the features ofλreq . In particular, we

neglect variables, higher-order functions, and parameterpassing. However, we feel free to use

these features in our examples, because their treatment canbe directly inherited fromλreq .

Semantics of services

We formally define the behaviour of services through a graph rewriting semantics [6]. In this

section, we assume that the services which initiate a computation are furnished with an arbitrary

plan. In the next section, we shall discuss a static machinery that will enable us to construct these

plans so to guarantee that computations will never go wrong,i.e. they satisfy all the contracts

and the security policies on demand. We shall also show some strategies to adopt when services

disappear unexpectedly (Section V).

The graph rewriting semantics for the case of dependent threads is split in two parts: basic

activities, events, security blocks, requests and returnsare shown in Fig. 5. Instead, Fig. 10

details the rules that involve planning and recovering strategies, i.e. planning blocks, requests

to unavailable services, unresolved requests, services going down and up, and publication of

new services. We shall briefly discuss the case of independent threads below in this section.

May 30, 2015 DRAFT

12

All the remaining axes in the taxonomy are covered by our semantics When irrelevant, we omit

the labelτ in services. Note that the actual values for some labels in rules REQ and RET are

defined later on in Fig. 6, since they depend on the choice madeon the security aspects discussed

in Section II. This gives rise to different behaviours of requests and returns according to the

possible choices in the taxonomy.

The configurations of our semantics are sets (i.e. networks)of services. We mark the next

activity to be performed by a running service with an overline, e.g.α(o) means that the event

α(o) is about to be fired. An activity just executed is marked with an underline, e.g.α(o). We

extend this notation to blocksB, i.e. B means that the entry node ofB is the next activity,

while B means that the exit node ofB was the last executed one. Also, configurations comprise

dashed arrows that connect a running request with the invoked service.

We now briefly discuss the graph rewritings in Fig. 5. Note that we only depict rewriting

within a context. For instance, the rewritinga ⇒ a in the SKIP rule can be applied in any

context, i.e. within any blockB containinga.

• A basic activity is just passed over (rule SKIP).

• The evaluation of an eventα(o) requires checking compliance of the new historyηα(o)

with each policyϕ in Φ (denotedηα(o) |= Φ), if the execution monitor is on. If all the

policies are respected (rule EV), then α(o) is appended to the current history, and the

execution proceeds to the next block. Otherwise, if some policy is violated (rule FAIL),

then the execution goes into a stuck statefail . This state models a security exception

(for simplicity, we do not model here exception handling; extending our formalism in this

direction would require to define, among the other things, how to compensate from aborted

computations, e.g. like in Sagas [32], [20])

• The rule SEQ says that, after a blockB has been evaluated, the next activity is chosen

among the blocks with incoming arrows fromB. Note that branching is a special case of

SEQ, where the blockB is a conditional or a switch.

• Entering a security blockϕ[B] results in appending the policyϕ to the sequence of active

policies. Leavingϕ[B] removesϕ from the sequence. In both cases, as soon as a history

is found not to respectϕ, and the execution monitor is on, the evaluation gets stuck.

• A requestreq rτ under a planr[ℓ′] | π looks for the service at siteℓ′. If the service is

available (rule REQ), then the client establishes a session with that service (dashed arrow),

May 30, 2015 DRAFT

13

Bi

ℓ π

η

B

· · ·· · ·· · · · · ·

SEQ

ℓ π

η

Bi

B

(m,Φ)(m,Φ)

ℓ π

η

ℓ π

(m,Φ)(m,Φ)

α(o)
FAIL

ηα(o) 6|= Φ
η

m is on,

fail

ℓ π

η

ϕ[B]

ℓ π

ϕ[B]

η (m,Φ)(m,Φϕ)

SECOUT

η′

ℓ′

B

r[ℓ′] | πℓ

η

req rτ

r[ℓ′] |π

(m,Φ) (m,Φ′)

ℓ′

B

ℓ π′

η′′

req rτ

(m′,Φ) η′

ℓ π

η

ℓ π

(m,Φ)(m,Φ) η

aa
SKIP

ℓ π

η

EV

ℓ π

(m,Φ)(m,Φ)

α(o) α(o)

ηα(o)

if m is on,
ηα(o) |= Φ

ℓ π

η

ϕ[B]

ℓ π

η

ϕ[B]

(m,Φ) (m,Φϕ)

SECIN

ℓ

η

req rτ

π π′

η′

ℓ′

B

(m,Φ) (m′,Φ′)

η̄

ℓ′

B

ℓ

η

req rτ

(m,Φ)

r[ℓ′] |π

REQ

RET

η′,Φ′ in Fig. 6

η′′ in Fig. 6

Fig. 5. Semantics of services in the case of dependent threads (Part I).

and waits until it returns. Note that the meaning of the labels η′ andΦ′ is left undefined in

Fig. 5, since it depends on the choice made on the security aspects discussed in Section II.

The actual values for the undefined labels are shown in Fig. 6.In particular, the initial

history of the invoked service is: (i) empty, if the service is stateless with local history; (ii)

May 30, 2015 DRAFT

14

Stateless serviceℓ′ Stateful serviceℓ′

Local histories Global histories Local histories Global histories

REQ
η′ = ε

Φ′ = ε

η′ = η

Φ′ = Φ

η′ = η̄

Φ′ = ε

η′ = η

Φ′ = Φ

RET η′′ = η η′′ = η η′′ = η η′′ = η′

Fig. 6. Histories and policies in four cases of the taxonomy.

the invoker history, if the service has a global history; (iii) the service past history, if the

service is stateful, with local history.

• Returning from a request (rule RET) requires suitably updating the history of the caller

service, according to chosen axes in the taxonomy. The actual values for the historyη′′ are

defined in Fig. 6.

The cases N/A, PLG IN, PLG OUT and UNRES are defined in Fig. 10, and they have many

possible choices. When no service is available for a request (e.g. because the plan is incomplete,

or because the planned service is down), or when you have to construct a plan for a block, the

execution may proceed according to one of the strategies discussed in Section V.

A plan is viable when it drives no stuck computations (unless some service mentioned in

the plan becomes unavailable). Under a viable plan, a service can always proceed its execution

without attempting to violate some security policy (therefore the execution monitor is unneeded),

and it will always manage to resolve each request. The staticmachinery described in Section IV

discovers viable plans.

An example

Consider a network composed by two services at locationsℓ andℓ′, both stateful and sharing a

global history. The service atℓ starts with an actionα (the omitted target object is immaterial in

this example), and then issues a requestr, resolved toℓ′ by the provided plan. The service atℓ′

performsα within a security blockϕ[· · ·], where the policyϕ preventsα from being fired twice.

A computation of the network is depicted in Fig. 7, where we assume the execution monitor is

on. Note that the planr[ℓ′] is not viable, because it drives a computation that fails because of

an attempted security violation, right before the secondα is fired atℓ′.

May 30, 2015 DRAFT

15

ε (on, ∅)

α

↓

req rτ

ℓ r[ℓ′]

ε

ϕ[α]

ℓ′

EV

ℓ

α (on, ∅)

α

↓

req rτ

r[ℓ′]

ε

ℓ′

ϕ[α] SEQ

ε

ϕ[α]

ℓ′

α (on, ∅)

α

↓

req rτ

ℓ r[ℓ′]

REQ SECIN

α

ℓ′

ϕ[α]

r[ℓ′]

(on, ∅)

ℓ

α (on, ∅)

α

↓

req rτ

r[ℓ′]

ℓ

α (on, ∅)

α

↓

req rτ

r[ℓ′] ℓ

α (on, ∅)

α

↓

req rτ

r[ℓ′]

α

ℓ′ r[ℓ′]

(on, ϕ)

fail

α

ℓ′

ϕ[α]

r[ℓ′]

(on, ϕ)

FAIL

αα 6|= ϕ

Fig. 7. A computation of two stateful services with global history.

Independent threads

To model independent threads, each service must keep a separate history for each thread.

Equivalently, we keep a history for each thread initiator. To this aim, instead of a single historyη,

services now carry a functionL mapping the labelℓI of each initiator to its corresponding history.

Moreover, we keep track of the initiator name: each service invoked on behalf of the initiatorℓI

is tagged as such. The semantics of services can now be easilyadapted, makingL(ℓI) play

the role of η in the semantics for dependent threads. We depict in Fig. 8 the rule REQ for

independent threads. The relation amongη, η′, Φ andΦ′ is still the one defined by Fig. 6. Note

that η′ is used to updatēL(ℓI), only: all other histories in̄L are left unchanged. The rule RET

is dealt with similarly, as for the rules FAIL , PLG IN and PLG OUT.

Modelling security policies

Security policiesϕ are regular properties of histories, and they are defined through template

security automataAϕ(x). A template security automaton gives rise to a finite state automaton

May 30, 2015 DRAFT

16

REQ

ℓ

req rτ

ℓ′

B

η′, Φ′ in Fig. 6
η = L(ℓI)

r[ℓ′] | πr[ℓ′] |π

ℓI ℓI ℓI

(m,Φ′)L̄′L (m,Φ)

ℓ′

B

L̄ L̄′ = L̄{ℓI 7→ η′}

ℓ

req rτ

r[ℓ′] |π

L (m,Φ)

Fig. 8. Maintaining separate histories in the case of independent threads.

when the parameterx is instantiated to an actual objecto. These automata will be exploited to

recognize those histories obeyingϕ. Formally, atemplate security automatonAϕ(x) is a 5-tuple

(S,Q, q0, F, E), wherex is a parameter, and:

• S ⊆ Act × (Obj ∪ {x, x̄}) is the input alphabet,

• Q is a finite set of states,

• q0 ∈ Q \ F is the start state,

• F ⊂ Q is the set of final “offending” states,

• E ⊆ Q× S ×Q is a finite set oftemplateedges, writtenq
ϑ

−⊸ q′.

The edges in a template security automaton can be of three kinds: eitherq
α(o)

−⊸ q′ whereo is

an object, orq
α(x)

−⊸ q′, or q
α(x̄)

−⊸ q′ (wherex̄ means “different fromx”). Given a objecto ∈ Obj,

a template security automatonAϕ(x) is instantiated into a finite state automatonAϕ(o) by binding

the variablex to o. The intuition is thatq
α(x)

−⊸ q′ will result in an actual transitionq
α(o)
−−→ q′,

while q
α(x̄)

−⊸ q′ will give rise to a finite set of transitionsq
α(o′)
−−−→ q′, for all o′ ∈ Obj \ {o}.

More formally, letAϕ(x) = (S,Q, q0, F, E) be a template security automaton, and leto ∈ Obj.

The finite state automatonAϕ(o) is defined by the 5-tuple(Ev, Q, q0, F, δ), where the transition

relationδ is defined as follows:

δ = δ̄ ∪ { q
α(o′)
−−−→ q |o′ ∈ Obj, ∄q′ : q

α(o′)
−−−→ q′ ∈ δ̄ }

May 30, 2015 DRAFT

17

where the auxiliary relation̄δ is defined as:

δ̄ = { q
α(o)
−−→ q′ | q

α(x)

−⊸ q′ ∈ E }

∪
⋃

o′∈Obj\{o}

{ q
α(o′)
−−−→ q′ | q

α(x̄)

−⊸ q′ ∈ E }

∪ { q
α(o′)
−−−→ q′ | q

α(o′)

−⊸ q′ ∈ E }

Note that the definition forδ adds self-loops for all the events not explicitly mentionedin the

template automatonAϕ(x).

We say that a historyη respectsϕ, written η |= ϕ, whenη is not in the language ofAϕ(o),

for all o ∈ Obj. Whenη is in the language ofAϕ(o) for some objecto, we say thatη violatesϕ,

written η 6|= ϕ. Note that instantiated template security automata are non-deterministic. Given a

history η and a policyϕ, we want thatall the traces of the instances ofAϕ(x) comply with ϕ.

This is a form of diabolic (or internal) non-determinism. Toaccount for that, we make the

“offending” states as final — thus going into a final state represents a violation of the policy,

while the other states mean compliance to the policy.

IV. CALL -BY-CONTRACT

A serviceB is plugged into a network by publishing it at a siteℓ, together with its interfaceτ .

We assume that each site publishes a single service, and thatinterfaces are certified, e.g. they

are inferred by the type and effect system similar to that in [13]. Also, we assume that services

cannot invoke each other circularly, since this is quite unusual in the SOC scenario.

Contracts

The typesτ are annotated withhistory expressionsH that over-approximate the possible run-

time histories. Fig. 9 displays the syntax of types and history expressions. When a service with

interfaceτ
H
−→ τ ′ is run, it will generate one of the histories denoted byH. Note that we overload

the symbolτ to range over both service types and request typesτ
ϕ
−→ τ ′.

History expressions, defined in Fig. 9, are a sort of context-free grammars. They include the

empty historyε, eventsα, andH · H ′ that represents sequentialization of code,H + H ′ for

branching, security blocksϕ[H], recursionµh.H (µ binds the occurrences of the variableh in

H), localizationℓ : H, and planned selection{π1 ⊲H1 · · · πk ⊲Hk}.

May 30, 2015 DRAFT

18

τ, τ ′ ::= types

b base type

τ
H
−→ τ ′ annotated functional type

H,H ′ ::= history expressions

ε empty

h variable

α(o) event

H ·H ′ sequence

H +H ′ choice

ϕ[H] security block

µh.H recursion

ℓ : H localization

{π1 ⊲H1 · · · πk ⊲Hk} planned selection

Fig. 9. Service interfaces: annotated types and history expressions

The semanticsof a history expression is a set of historiesη, possibly carrying security

annotations in the formϕ[η]. We denote byJHK the semantics ofH. We now briefly describe

how this semantics is constructed: see [8] for the formal treatment.

• The semantics of the history expressionα is the set of histories{α}.

• The semantics ofH ·H ′ is the set of historiesηη′ such thatη ∈ JHK andη′ ∈ JH ′K.

• The semantics ofH +H ′ comprises the historiesη such thatη ∈ JHK ∪ JH ′K.

• The semantics ofϕ[H] is the set of historiesϕ[η] such thatη ∈ JHK.

• The semantics ofµh.H is the least fixed point of the operatorf(H) = JHK{H/h}, where we

denote withJHKρ the semantics of a history expressionH in an environmentρ, mapping

variablesh to sets of histories. For instance, the semantics ofµh. (γ +α · h · β) consists of

all the historiesαnγβn, for n ≥ 0 (i.e. γ, αγβ, ααγββ, . . .).

• The constructℓ : H localizes the behaviourH to the siteℓ. E.g.,ℓ : α · (ℓ′ : α′) · β denotes

two histories:αβ occurring at locationℓ, andα′ occurring atℓ′.

• A planned selection abstracts the behaviour of service requests. Given a planπ, a planned

May 30, 2015 DRAFT

19

selection{π1 ⊲H1 · · · πk ⊲Hk} chooses thoseHi such thatπ includesπi. Intuitively, the

history expressionH = {r[ℓ1] ⊲ H1, r[ℓ2] ⊲ H2} is associated with a requestr that can

be resolved into eitherℓ1 or ℓ2. The histories denoted byH depend on the given planπ:

if π choosesℓ1 (resp. ℓ2) for r, thenH denotes one of the histories represented byH1

(resp.H2). If π does not choose eitherℓ1 or ℓ2, thenH denotes no histories.

Certifying contracts and planning

Our planning and verification technique for services is inherited from that of theλreq calculus.

The interested reader can find the formal foundations of our work in [10], [8]. Here, we only

summarize the relevant results for our present modelling framework.

A static analysis over our diagrams infers judgements of theform H ⊢ B : τ . Roughly, this

means that the service with codeB has typeτ , and its execution histories are represented by

the history expressionH. This static analysys enjoys two fundamental results.

Correctness. Effects correctly over-approximate service run-time histories

More formally, consider a service with codeB such thatH ⊢ B : τ . If running the service

(plugged into a network) generates a historyη, thenη ∈ JBK ([8], Th. 1).

The second property of our static analysis istype safety. We say that an effectH is valid under

a planπ when the histories denoted byH never violate the security policies inH. Type safety

ensures that, if (statically) the effect of a serviceB is valid under a planπ, then (dynamically)

the planπ is viable forB.

Type safety. Valid effects drive computations that never attempt security violations.

More formally, consider a service with codeB such thatH ⊢ B : τ . If H is valid underπ,

then the execution issecure(i.e. η |= Φ whenever a running service carries labelsη and(m,Φ)),

and it never reaches afail configuration. Moreover, ifπ is complete (i.e. it has no unresolved

choicesr[?]) and the chosen services do not disappear, then the execution monitor can be safely

kept off ([8], Th. 2).

A further result is that the validity of history expressionscan be mechanically verified.

May 30, 2015 DRAFT

20

Model-checking. Validity for history expressions is model-checkable.

The actual model-checking algorithm for the validity ofH returns the set of plans under

which H is valid. Determining such viable plans is not a trivial task: indeed, resolving requests

independently might not lead to a viable plan, as discussed in the introduction. Our model-

checking technique requires several preliminary steps. Technically, we firstlinearize the history

expressionH to collect all the plans and the associated effects, while preserving the semantics

of H ([8], Ths. 4 and 5). The resulting history expression has theform of a single, top-level

planned selection{π1⊲H1 · · · πk ⊲Hk}. We can then check eachHi independently. First,Hi is

regularizedto remove the redundant framingsϕ[· · ·ϕ[· · ·] · · ·] ([8], Th. 6). This makes possible

to construct a finite state automaton that recognizes the validity of histories ([8], Lemma 8).

This finite state automaton is then used in the actual model-checking ofHi ([8], Th. 8). If Hi

model-checks, then the associated planπi is viable. Summing up:

Planning = Correctness + Type Safety + Model Checking

V. PLANNING AND RECOVERING STRATEGIES

We now consider the problem of choosing the appropriate service for a block of requests.

While one might defer service selection as much as possible, thus only performing it when

executing a request, it is usually advantageous to decide how to resolve requests in advance, i.e.

to build a plan. This is because “early planning” can providebetter guarantees than late service

selection. For instance, consider a block with two consecutive requestsr1 and r2. It might be

that, if we choose to resolver1 with a particular serviceℓ1, later on we will not be able to find

safe choices forr2. In this case we get stuck, and we must somehow escape from this dead-

end, possibly with some expensive compensation (e.g. cancelling a reservation). Early planning,

instead, can spot this kind of problems and try to find a betterway, typically by considering

alsor2 when taking a choice forr1.

As seen in the previous section, a complete viable planπ for a blockB guarantees thatB

can be securely executed without execution monitoring, andthat we will never get stuck unless

a service mentioned inπ becomes unavailable. When we cannot find a complete viable plan, we

May 30, 2015 DRAFT

21

could fall back to using an incomplete plan with unresolved requestsr[?]. In this case, we get

a weaker guarantee than the one above, namely that we will notget stuck until an unresolved

request must actually be executed.

To provide graceful degradation in our model, we also consider the unfortunate case of

executing a requestr when eitherr is still unresolved in the plan (Rule UNRES), or r is resolved

with an unavailable service (Rule N/A, for Not Available). Notationally, unavailable services

are represented as slashed boxes. Therefore, we will look for a way to continue the execution,

possibly repairing the plan.

Figure 10 formalizes the behaviour of services related to planning and recovering.

• Rule DOWN models an idle service becoming unavailable. For simplicity, we assume

that services cannot become unavailable while serving a request. Unavailable services are

modelled as slashed boxes.

• Rule UP models an unavailable service going back to the available state.

• Rule PUB is for service publishing. The behavioural interfaceτ of a new service (with

codeB) must be statically certified, writtenH ⊢ B : τ . Note thatH = ε for non-initiator

services. The effect of an invoked service with typeτ = τ0
H′

−→ τ1 is the latent effectH ′.

• Rule N/A models a request to an unavailable service. Recovering from this situation

demands for updating the current plan, and possibly activating the execution monitor. Below

in this section we shall examine some possible strategies for doing that.

• Rule UNRES handles the case of unresolved requests. These are dealt with similarly to the

rule N/A.

• Rule PLN IN describes which actions have to be taken when entering a planning block{B}.

Before start the execution ofB, we need to devise a plan for resolving the service requests

in B. Again, several strategies are applicable, as discussed below.

• Rule PLN OUT simply exits from a planning block. This operation affects neither the plan

nor the execution monitor.

We now discuss some strategies for constructing or repairing a plan. As a matter of fact, no

strategy is always better than the others, since each of themhas advantages and disadvantages,

as we will point out. The choice of a given strategy depends onmany factors, some of which

lie outside of our formal model (e.g. availability of services, cost of dynamic checking, etc.).

We devise four main classes of strategies:

May 30, 2015 DRAFT

22

ℓ′

ℓ π

η

{B} PLN IN

(m,Φ)

ℓ π′

η

{B}

(m′,Φ′)

π′,m′,Φ′

in Fig. 11

ℓ

η

B

ℓ

η

B

ℓ

η

B

ℓ

η

BDOWN UP

B

ℓ : τ

ℓ fresh

ε

PUB
H ⊢ B : τ

π′,m′,Φ′

in Fig. 11

ℓ

η (m,Φ)

req rτ

r[?] | π ℓ

η

UNRES

(m′,Φ′)

π′

req rτ

PLNOUT

ℓ π

η

{B}

ℓ′ℓ

η

r[ℓ′] | π

(m,Φ)

ℓ

η

req rτ

π′

(m,Φ)

ℓ π

η

{B}

(m,Φ)

(m′,Φ′)

π′,m′,Φ′

in Fig. 12

N/Areq rτ

Fig. 10. Semantics of services in the case of dependent threads (PartII).

Greyfriars Bobby. 1 Follow loyally a former plan. If a service becomes unavailable, just

wait until it comes back again. This strategy is always safe,although it might obviously

block the execution for an arbitrarily long time — possibly forever.

Patch. Try to reuse as much as possible the current plan. Replace the unavailable services

with available ones, possibly newly discovered. The new services must be verified for

compatibility with the rest of the plan.

1In 1858, a man named John Gray was buried in old Greyfriars Churchyard in Edinburgh. The famous Skye Terrier, Greyfriars

Bobby was so faithful to his master that for fourteen years, until his owndeath, Bobby lay on the grave only leaving for food.

May 30, 2015 DRAFT

23

Sandbox. Try to proceed with the execution monitor turned on. The new plan only respects

a weak form of compatibility on types ignoring the effectH, but it does not guarantee

that contracts and security policies are always respected.Turning on the execution monitor

ensures that there will not be security violations, but execution might get stuck later on,

because of attempted insecure actions.

Replan. Try to reconstruct the whole plan, possibly exploiting newly discovered services. If

a viable plan is found, then you may proceed running with the execution monitor turned off.

A complete plan guarantees that contracts and security policies will be always respected,

provided than none of the services mentioned in the plan disappear.

In Fig. 11, we describe the effects of these strategies in thecontext of the N/A and UNRES

rules. There, we also make precise the recovered planπ′ and the(m′,Φ′) appearing in the rule.

For the “Greyfiars Bobby” strategy, we patiently wait for the service to reappear; on timeout,

we will try another strategy. The Patch strategy mends the current plan with a local fix. Note

that the Patch strategy is not always safe: in the general case, it is impossible to change just the

way to resolve the failing requestr and have a new safe plan. We shall return on this issue later

on. However, as the figure shows, in some cases this is indeed possible, provided that the plan

with the new choice forr is checked for validity. The Replan strategy is safe when a suitable

plan is found, but it could involve statically re-analysinga large portion of the system. When

all else fails, it is possible to run a service under a Sandbox, hoping that we will not get stuck.

From now onwards, we use the following abbreviations for thevarious alternatives described

in Section II: stateless (1) / stateful (ω), local (L) / global (G), first order (F) / higher-order (H),

dependent (D) / independent (I). For instance, the case IFL1in the figure is the one about

independent threads, first order requests, local histories, and stateless services.

In Fig. 12 we list the strategies for the rule PLN IN, describing how to build a plan for a

block B. Note that, when we construct a new planπ′ we already have a planπ | πB, whereπB

only plans the requests insideB. We can then reuse the available information inπ andπB to

build π′. The former planπ | πB can be non-empty when using nested planning blocks, so

reusing parts from it is indeed possible. Since we can reuse the old plan, the strategies are

exactly the same of those for the N/A case.

The “Greyfriars Bobby” strategy waits forall the services mentioned in the old plan to be

available at planning time. This is because it might be wise not to start the block, if we know

May 30, 2015 DRAFT

24

STRATEGY STATE UPDATE CASE CONDITION

Greyfriars Bobby
π

Φ
all The current planπ has a choice forr

Patch
π | r[ℓi]

Φ

IFL1 ϕ[Hi] is valid

IFLω ϕ[Hi] is valid, andℓi 6∈ π

IFG1 ηϕ[Hi] is valid

DFL1 ϕ[Hi] is valid

Sandbox
π | r[ℓi]

(on,Φϕ)
all The serviceℓi has typeτ → τ ′

Replan
π′

(off ,Φϕ)
all The new planπ′ has a choice forr

Fig. 11. Failure handling strategies for a requestreq rτ
ϕ
−→ τ ′.

that we will likely get stuck later. Instead, if some services keep on being unavailable, we should

rather consider the other strategies.

As for the N/A rule, the Patch strategy is not always safe, butwe can still give some conditions

that guarantee the safety of the plan update, which is local to the blockB. The Replan strategy,

instead, can change the whole plan, even for the requests outside B. If possible, we should

always find a complete plan. When this is not the case, we might proceed with some unresolved

requestsr[?], deferring them to the N/A rule. As a last resort, when no viable plan can be found,

or when we deem Replan to be too expensive, we can adopt the Sandbox strategy that turns on

the execution monitor.

We now show a situation where the Patch strategy is not safe. We consider the case IFLω

case (independent threads, first order requests, local histories, stateful services). The initiator

service, in the middle of Fig. 13, performs two requestsr1 andr2 in sequence. The two requests

have the same contract, and thus they can be resolved with thestateful servicesℓ1 and ℓ2. The

service atℓ2 performs an eventα, within a security blockϕ. If ϕ allows a single occurrence

of α, we should be careful and invoke the (stateful) serviceℓ2 at most once. The current plan

π = r1[ℓ1] | r2[ℓ2] is safe, since it invokesℓ2 exactly once.

May 30, 2015 DRAFT

25

STRATEGY STATE UPDATE CASE CONDITION

Greyfriars Bobby
π | πB

Φ
all The planπB has a choice for allri

Patch
π | ri[ℓi] | · · ·

Φ

IFL1 ϕ[Hi] is valid, for all i

IFLω ϕi[Hi] are valid,ℓi are distinct, and allℓi 6∈ π

IFG1 ηiϕi[Hi] are valid, for alli

DFL1 ϕi[Hi] are valid, for alli

Sandbox
π | ri[ℓi] | · · ·

(on,Φϕ)
all The servicesℓi have typeτi → τ ′i

Replan
π′

(off ,Φϕ)
all

ηH valid underπ′ , where

η is the current history, and

H approximates the future behaviour

(may need to refine the analysis)

Fig. 12. Planning strategies for a blockB involving requestsreq ri
τi

ϕi−→ τ ′

i

η

ℓ : τ ′

req r2
τ

req r1
τ

r1[ℓ1] | r2[ℓ2]

(m,Φ) η2

ℓ2 : τ

ϕ[α]

(m2,Φ2)η1

ℓ1 : τ

(m1,Φ1)

Fig. 13. An unsafe use of the Patch strategy.

Now, consider what happens if the serviceℓ1 becomes unavailable. The N/A rule is triggered:

if we apply Patch and replace the current plan withr1[ℓ2] | r2[ℓ2], then this patched plan isnot

viable. Indeed, the new plan invokesℓ2 twice, so violatingϕ. The safety condition in Fig. 11 is

false, becauseℓ2 ∈ π: therefore, this dangerous patch is correctly avoided.

May 30, 2015 DRAFT

26

ℓ0

ε

0

(off , ∅) ε

ℓ2

ϕ[α]

ε

ℓ1

ϕ









act

α β









ℓ0

ε (off , ∅)

r[l1] | r
′[l2]

ε

ℓ2

ϕ[α]
REQ

ε

ℓ1

ϕ









act

α β









ε

ℓ2

ϕ[α]

(off , ∅)

r[l1] | r
′[l2]

α

ℓ1

ϕ









act

α β









ε

ℓ2

ϕ[α]

α

ℓ1

ϕ









act

α β









r[l1] | r
′[l1]ℓ0

ε (on, ∅)ε

ℓ2

ϕ[α]

α

ℓ1

ϕ









act

α β









r[l1] | r
′[l2]ℓ0

ε (off , ∅)

(off , ∅)

r[l1] | r
′[l2]

ε

ℓ1

ϕ









act

α β









r[l1] | r
′[l2]ℓ0

ε (off , ∅)

PLN IN

N/A

SECOUT

EV

SEQ

SKIP

SECIN

r[l1] | r
′[l2]ℓ0

ε (off , ∅)ε

ℓ2

ϕ[α] DOWN

RET



















req rτ

↓

req r′τ





































req rτ

↓

req r′τ





































req rτ

↓

req r′τ





































req rτ

↓

req r′τ





































req rτ

↓

req r′τ





































req rτ

↓

req r′τ



















Fig. 14. Semantics Example

An example

We show in Fig. 14 a short example illustrating our service semantics, in the case of stateful

local histories (ILFω). The network is composed of three services: an initiator (labelledℓ0) and

two other services (ℓ1 and ℓ2). The initiator performs two requests using the same contract τ ;

in this example we simply assume that both servicesℓ1 and ℓ2 are compatible withτ . The

serviceℓ1, when invoked, runs some activityact and then may perform either the eventα or the

eventβ. Instead,ℓ2 may performα, only. Both services run their code under a local policyϕ,

stating that the eventα can be performed at most once, in the whole life of each service. In the

initial state, all the histories are empty (ε), the initiator has not yet computed a plan (0), and the

execution monitor is not active (off).

May 30, 2015 DRAFT

27

We now comment on the transitions. For brevity, in Fig. 14 we sometimes compacted more

steps in a single one, as we shall point out shortly. First, rule PLN IN is used to form a plan,

resolving both requestsr andr′. There are four possible plans, since each of the requests can be

resolved with eitherℓ1 or ℓ2. Invoking ℓ2 twice will surely violate the policyϕ. Serviceℓ1 could

also invalidate the policyϕ if the α branch is taken in both invocations: our static machinery, to

err on the safe side, assumes this worst-case situation and consider invokingℓ1 twice as unsafe.

So, the only viable plans arer[ℓ1] | r′[ℓ2] andr[ℓ2] | r′[ℓ1]. In the figure we choose the first plan.

In the second transition we simply use rule REQ and invokeℓ1. Then many transition rules are

applied: we enter the security block with rule SECIN; we run act with rule SKIP; we choose

the α branch with rule SEQ; we run α with rule EV; we finally exit the security block with

rule SECOUT. The eventα is therefore recorded in the history ofℓ1. Finally, we can return

to ℓ0 using rule RET. Here, we show what happens if serviceℓ2 becomes unavailable through

rule DOWN. To run requestr′ we can not use rule REQ, but instead we can apply rule N/A

and try to recovery from the failure ofℓ2. We then apply the Sandbox strategy. We turn on

the execution monitor, and fix the plan so thatr′ resolves to some available service compatible

with τ : in the example,ℓ1. Doing this, we shall run again serviceℓ1. If the service will attempt

to perform anotherα, this will be prevented by the execution monitor. If insteadℓ1 will choose

the β branch, it will complete successfully.

VI. SCENARIOS FOR SECURE SERVICE COMPOSITIONS

To illustrate some of the features and design facilities made available by our framework, we

consider two small case studies. First, we consider a car repair scenario, where a car may break

and then request assistance from a tow-truck and a garage. The second scenario is about an

embedded computational device that wants to delegate execution of mobile code.

A. Car repair

In this scenario, we assume a car equipped with a diagnostic system that continuously reports

on the status of the vehicle. When the car experiences some major failure (e.g. engine overheating,

exhausted battery, flat tyres) the in-car emergency serviceis invoked to select the appropriate

tow-truck and garage services. The selection may take into account some driver custom policies,

May 30, 2015 DRAFT

28

and other constraints, e.g. the tow-truck should be close enough to reach both the location where

the car is stuck and the chosen garage.

The main focus here is not on the structure of the overall system architecture, rather on how to

design the workflow of the service orchestration, taking into account the specific driver policies

and the service contracts on demand.

The system is composed of three kinds of services: theCAR-EMERGENCY service, that tries

to arrange for a car tow-trucking and repair, theTOW-TRUCK service, that picks the damaged

car to a garage, and theGARAGE service, that repairs the car. We assume that all the involved

services trust each other’s history, and so we assume a shared global history, with independent

threads. We also design all the services to be stateful, so that, e.g. the driver can customize the

choice of garages, according to past experiences.

We start by modelling theCAR-EMERGENCY, i.e. the in-vehicle service that handles the car

fault. This service is invoked by the embedded diagnosis system, each time a fault is reported.

The actual kind of fault, and the geographic location where the car is stuck, are passed as

parameters — namedflt and loc. The diagram of theCAR-EMERGENCY service is displayed on

the left-hand side of Fig. 15.

αBL[yes]

[no]

ϕBL


















req rT
void

ϕL(loc)
−−−−−→ void

req rG
void

ϕF (flt)
−−−−→ void



















q3

sgn(x̄)

αBL

q0 q1

q2

repair ok ?

Fault × Location −→ Bool

AϕBL(x)

sgn(x)

sgn(x)

Fig. 15. TheCAR-EMERGENCY service and the black-listing policyϕBL.

The outer policyϕBL (black-list) has the role of enforcing a sort of “quality of service”

constraint. TheCAR-EMERGENCY service records in its history the list of all the garages used

May 30, 2015 DRAFT

29

in past repair requests. When the selected garageℓG completes repairing a car, it appends to

the history its own signaturesgn(ℓG). When the user is not satisfied with the quality (or the

bill!) of the garage, the garage is black-listed (eventαBL). The policyϕBL ensures that a black-

listed garage (marked by a signaturesgn(ℓG) followed by a black-listing tagαBL) cannot be

selected for future emergencies. The black-listing policyϕBL is formally defined by the template

security automaton in Fig. 15, right-hand side. Note that some labels inϕBL are parametric:

sgn(x) and sgn(x̄) stands respectively for “the signature of garagex” and “a signature of any

garage different fromx”, wherex can be replaced by an arbitrary garage identifier. If, starting

from the stateq0, a garage signaturesgn(x) is immediately followed by a black-listing tagαBL,

then you reach the stateq2. Fromq2, an attempt to generate againsgn(x) will result in a transition

to the “offending” sink stateq3. For instance, the historysgn(ℓ1)sgn(ℓ2)αBL · · · sgn(ℓ2) drives

the automatonAϕBL(ℓ1) to the stateq3, thus violating the policyϕBL.

The crucial part of the design is the planning block. It contains two requests:rT for the tow-

truck, andrG for the garage. The contractϕL(loc) requires that the tow-truck is able to serve

the locationloc where the car is broken down. The contractϕF (flt) selects the garages that can

repair the kind of faultsflt . The planning block has the role of determining the orchestration plan

for both the requests. In this case, it makes little sense to continue executing with an incomplete

plan or with sandboxing: you should perhaps look for a car rental service, if either the tow-truck

or the garage are unavailable. Therefore, a meaningful planning strategy is trying to find a couple

of services matching bothrT andrG, and wait until both the services are available.

The diagram of theTOW-TRUCK service is displayed in Fig. 16, on the left. The service

will first fire the eventinitT , to signal starting of execution, and then it will expose thelist

of geographic locationsZIP1, . . . ,ZIPk it can reach. Each zip codeZIPi is modelled as an

event. The computation then branches, according to whetherthere are any available trucks. This

is rendered as a basic activity with two outgoing edges. The contractϕL(loc) imposed by the

CAR-EMERGENCYservice ensures that the locationloc is covered by the truck service. Formally,

ϕL(loc) checks if the zip codeloc is contained in the interface of the tow-truck service (we omit

the automaton forϕL(loc) here). Then, theTOW-TRUCK may perform some internal activities

(irrelevant in our model), possibly invoking other internal services. The exposed interface is of

the formvoid
initT ·ZIP1···ZIPk−−−−−−−−−−→ void .

The GARAGE service (Fig. 16, center) exposes the kinds of faultsREP1, . . . ,REPn the garage

May 30, 2015 DRAFT

30

[no][yes]

ZIP1

initT

available trucks ?

ZIPk

REPn

sgn(ℓG)

REP1

ℓG : void
REP1···REPn·sgn(ℓG)
−−−−−−−−−−−−−−→ void

ϕGZ

ℓT : void
initT ·ZIP1···ZIPk−−−−−−−−−−−→ void

initT ZIPG

AϕGZ

q1

q0

Fig. 16. TheTOW-TRUCK (left) and GARAGE (right) services, and the Garage-Zip policyϕGZ

can repair, e.g. tyres, engine, etc. The request contractϕF (flt) ensures that the garage can repair

the kind of faultflt experienced by the car. TheGARAGE service may perform some internal

bookkeeping activities to handle the request (not shown in the figure), possibly using internal

services from its local repository. After the car repair hasbeen completed, the garageℓG signs a

receipt, through the eventsgn(ℓG). This signature can be used by theCAR-EMERGENCY service

to implement its black-listing policy.

TheGARAGE service exploits the policyϕGZ (for Garage-Zip, see Fig. 16, right) to ensure that

the tow-truck can reach the garage address. Assume the garage is located in the area identified

by ZIPG. Then, the policyϕGZ checks that the tow-truck has exposed the eventZIPG among

the locations it can reach. The eventinitT ensures that only the last invocation of theTOW-

TRUCK service is considered. For instance, the historyinitT ZIPG1initT ZIPG1 ZIPG ZIPG2 obeys

ϕGZ (recall that the instantiation of template security automata adds the self-loops forZIPG1

and ZIPG2 , and that the final states are actually the offending ones). When both the contract

ϕL(loc) and the policyϕGZ are satisfied, we have the guarantee that the tow-truck can pick the

car and deposit it at the garage.

In Fig. 17, we show a system composed by one carℓCAR, two TOW-TRUCK servicesℓT1

May 30, 2015 DRAFT

31

sgn(LU)αBL

ℓFL

ϕGZ(FL)

sgn(ℓFL)

REPtyres

REPbattery

sgn(ℓLU)

REPengine

REPtyres

ϕGZ(LU)

ℓLU

(on, ϕBL)

[no][yes] [no][yes]

ℓCAR(Pisa,Tyres)

ϕBL

[yes]

[no]

αBL



















req rT
void

ϕL(ZIPPI)−−−−−−−−→ void

req rG
void

ϕF (REPtyres)
−−−−−−−−−→ void



















ℓT1

repair ok ?

ℓT2

available trucks ?

ZIPPI

ZIPFL

initT initT

ZIPPI

ZIPSI

ZIPLU

available trucks ?

Fig. 17. TheCAR-EMERGENCY client (ℓCAR), two tow-truck services (ℓT1, ℓT2), and two garages (ℓFL, ℓLU).

andℓT2, and twoGARAGE servicesℓFL andℓLU . The car has experienced a flat tyres accident in

Pisa (ZIPPI), and it has black-listed the garage in Lucca, as recorded inthe historysgn(LU)αBL.

The tow-truck serviceℓT1 can reach Florence and Pisa, whileℓT2 covers three zones: Pisa, Siena

and Lucca. The garageℓFL is located in Florence, and it can repair tyres and batteries; the

garageℓLU is in Lucca, and it repairs engines and tyres.

We now discuss all the possible orchestrations:

• the planrT [ℓT1] | rG[ℓLU] is not viable, because it violates the policyϕGZ(LU). Indeed,

the tow-truck can serve Florence and Pisa, but the garage is located in Lucca.

• similarly, the planrT [ℓT2] | rG[ℓFL] violatesϕGZ(FL).

• the planrT [ℓT2] | rG[ℓLU] is not viable, because it violates the black-listing policyϕBL.

Indeed, it would give rise to a historysgn(LU)αBL · · · sgn(LU), not accepted by the

May 30, 2015 DRAFT

32

automaton in Fig. 15.

• finally, the planrT [ℓT1] | rG[ℓFL] is viable. The tow-truck can reach both the car, located

in Pisa, and the garage in Florence, which is not black-listed.

B. Remote code execution

Consider the scenario depicted in Fig. 18. Assume that the client at siteℓ0 is a device with

limited computational capabilities, wanting to execute some code downloaded from the network.

To do that, the client issues two (higher order) requests in sequence, the first one to obtain a piece

of mobile code (e.g. an applet), and the second one to dispatch its execution to another service.

The sitesℓ1 and ℓ2 are the available code providers, whileℓ3 and ℓ4 are the code executers.

Modelling this scenario requires enriching our graphical notation with some extra features, e.g.

parameter passing and higher-order services. In Fig. 18 we shall briefly introduce the needed

notation. A more formal treatment can be obtained by using the calculusλreq [12].



















f = (req r1Int −→ (Int −→ Int))()

(req r2(Int −→ Int) −→ Bool)(f)



















ℓ0

ℓ1

ℓ2

ℓ3

ℓ4

sgn(ℓ3) → αω → · · · → ϕCW[f()] · · ·

sgn(ℓ4) → α1 → · · · → f() → · · ·

(fun x) sgn(ℓ1) → ϕOS[· · · → read]

(fun x) sgn(ℓ2) → read → · · · → write

Fig. 18. One client (ℓ0), two code providers (ℓ1, ℓ2), and two code executors (ℓ3, ℓ4). To deal with higher order, we introduce

some extra notation. Passing a parameterf to a service invoked through a requestr is denotedreq rτ(f). A service returning

a function that takes as input a parameterx and then evaluates the blockB is denoted(fun x)B.

The request labelledr1 asks for some code, and it can be served by two code providers at ℓ1

andℓ2, both stateless and with local histories. The request typeInt −→ (Int −→ Int) means that,

upon receiving a value of typeInt , the invoked service replies with a function fromInt to Int ,

with no security constraints.

May 30, 2015 DRAFT

33

The service atℓ1 returns a “one-shot” function that can be used only once. Within the function

body, the only security-relevant operations are writing the service signature (sgn(ℓ1)) and reading

(read) on the file system where the delivered code is run. The policyϕOS ensures that the code

is one-shot. To do that,ϕOS permits using the function in stateful sites only, and then prevents

the eventsgn(ℓ1) from being executed twice (see the template security automaton AϕOS(x) in

Fig. 19, right). We assume that a service declares that it supports stateful execution by emitting

the eventαω, while the eventα1 is for stateless services. The code provided byℓ2 first reads

(read) some local data, and eventually writes them back (write) to ℓ2.

Since ℓ0 is assumed to have a limited computational power, the codef obtained by the

requestr1 is passed as a parameter to the service invoked by the requestr2. This request can be

served by eitherℓ3 or ℓ4, both with local histories. The service atℓ3 is stateful (αω), and it runs

the provided codef under a “Chinese Wall” security policyϕCW, requiring that no data can be

written after reading them (seeAϕCW in Fig. 19, left). The service atℓ4 is stateless (α1), and it

simply runs the codef , with no security constraints.

q2

q1q0 q′1q′0

sgn(ℓ1)

AϕCW

q′3 q′2

AϕOS(x)

sgn(x)

sgn(ℓ1) sgn(ℓ1)write

read

αω

Fig. 19. The Chinese Wall policyϕCW (left) and the one-shot policyϕOS(x) (right).

The types inferred for the services are shown in Fig. 20. For instance, the type ofℓ3 is a

polymorphic function that, when applied to a function with alatent effecth (whereh is an

effect variable, to be bound to a history expression), will produce a value of typeBool , and a

history in the semantics ofsgn(ℓ3) · αω · ϕCW[h].

The abstract behaviour of the whole network of services is therefore rendered by the following

May 30, 2015 DRAFT

34

ℓ1 : Int −→ (Int
sgn(ℓ1)·ϕOS[read]
−−−−−−−−−−→ Int)

ℓ3 : (Int
h
−→ Int)

sgn(ℓ3)·αω·ϕCW[h]
−−−−−−−−−−−→ Bool

ℓ4 : (Int
h
−→ Int)

sgn(ℓ4)·α1·h
−−−−−−−→ Bool

ℓ2 : Int −→ (Int
sgn(ℓ2)·read ·write
−−−−−−−−−−−→ Int)



















f = (req r1Int −→ (Int −→ Int))()

(req r2(Int −→ Int) −→ Bool)(f)



















ℓ0

(fun x) sgn(ℓ2) → read → · · · → write

(fun x) sgn(ℓ1) → ϕOS[· · · → read]

sgn(ℓ3) → αω → · · · → ϕCW[f()] · · ·

sgn(ℓ4) → α1 → · · · → f() → · · ·

Fig. 20. One client, four services, and their certified published interfaces.

history expressionH:

{r2[ℓ3]⊲ ℓ3 : sgn(ℓ3) · αω · ϕCW[{r1[ℓ1]⊲ sgn(ℓ1) · ϕOS[read], r1[ℓ2]⊲ read · write}]

r2[ℓ4]⊲ ℓ4 : sgn(ℓ4) · α1 · {r1[ℓ1]⊲ sgn(ℓ1) · ϕOS[read], r1[ℓ2]⊲ read · write}}

The intuitive meaning ofH is that, under the planr2[ℓ3], i.e. if r2 is served byℓ3, the

eventssgn(ℓ3) andαω are generated at siteℓ3, followed by a security blockϕCW. This block

wrapssgn(ℓ1) ·ϕOS[read] if ℓ1 is chosen forr1, or read ·write if ℓ2 is chosen instead. Otherwise,

if r2 is served byℓ4, then the behaviour (on siteℓ4) depends on the former choice forr1. If ℓ1

was selected, thensgn(ℓ1)·ϕOS[read], otherwiseread ·write. Note also that no event is generated

by the client at siteℓ0.

The presence of higher order requests makes non-trivial analysing H to find if there is any

viable plan. The problem is that the effect of selecting a given service for a request is not

confined to the execution of that service. The history generated while running a service may

later on violate a policy that will become active after the service has returned. Since each service

selection affects thewhole execution of a program, we cannot simply devise a viable planby

looking at local requests constraints, only.

May 30, 2015 DRAFT

35

In our example, we find thatH is equivalent to the followingH ′:

H ′ = {r1[ℓ1] | r2[ℓ3]⊲ ℓ3 : sgn(ℓ3) · αω · ϕCW[sgn(ℓ1) · ϕOS[read]],

r1[ℓ2] | r2[ℓ4]⊲ ℓ4 : sgn(ℓ4) · α1 · sgn(ℓ2) · read · write,

r1[ℓ1] | r2[ℓ4]⊲ ℓ4 : sgn(ℓ4) · α1 · sgn(ℓ1) · ϕOS[read],

r1[ℓ2] | r2[ℓ3]⊲ ℓ3 : sgn(ℓ3) · αω · ϕCW[sgn(ℓ2) · read · write]}

Every element ofH ′ clearly separates the plan from the associated abstract behaviour. This

piece of behaviour has no further plans within, and so it has all the information needed to

model-check its validity. E.g., under the planr1[ℓ1] | r2[ℓ3], the abstract behaviour at siteℓ3 is:

sgn(ℓ3) · αω · ϕCW[sgn(ℓ1) · ϕOS[read]]

There are then four possible plans for the execution:r1[ℓ1] | r2[ℓ3], r1[ℓ1] | r2[ℓ4], r1[ℓ2] | r2[ℓ3],

and r1[ℓ2] | r2[ℓ4]. The planr1[ℓ2] | r2[ℓ3] is not viable, because it would drive a computation

aborted by the execution monitor at siteℓ3. The monitor aborts the execution just before

generating the eventwrite, because the historysgn(ℓ3)αω sgn(ℓ2) read write (local atℓ3) would

violate the Chinese-Wall policyϕCW. The planr1[ℓ1] | r2[ℓ4] is not viable, too. Indeed, the history

sgn(ℓ4)α1 sgn(ℓ1) at ℓ4 violates the policyϕOS(ℓ4) (recall thatϕOS prevents the code provided

by ℓ1 from being executed by stateless services). There are two further plans to consider, i.e.

r1[ℓ1] | r2[ℓ3] andr1[ℓ2] | r2[ℓ4]. These plans are judged viable by our static analysis, and indeed

they drive executions that never fail.

Summing up, we have inferred the overall effectH, we have transformed it into a simple

planned selection{π1 ⊲ H1 · · · πk ⊲ Hk}, and we have model-checked the validity of theHi.

The plansπi associated with the validHi safely drive the execution, without resorting to any

run-time monitor.

VII. C ONCLUSIONS AND RELATED WORK

We have introduced a UML-like graphical language for designing and verifying security

policies of service-oriented applications. The distinguished feature of our modelling framework

is that it provides high-level constructs (e.g. call-by-contract) abstracting from the underlying

middleware for service programming and deploying. We tackled the problem of modelling and

verifying properties of service orchestration in the presence of security constraints. Our main

May 30, 2015 DRAFT

36

result is a semantic-based methodology for synthesizing the skeleton structure of the orchestration

engine. The orchestration plan details which services the orchestrator engine has to choose in

order to complete the original task, while obeying the security policies on demand. Here, we dealt

with security policies, but our methodology can be applied to handle a variety of non-functional

safetyconstraints.

We envisage the impact of our approach on the service protocol stack as follows. First, our pro-

posal requires extending services description languages:besides the standard WSDL attributes,

service description includes information about service behaviour. Moreover, the call-by-contract

invocation mechanism adds a furtherplanning layer to the standard service protocol stack. This

layer provides the orchestrator with the plans guaranteeing that the relevant services always

respect the required properties. The trustfulness of the planning layer and of the orchestrator

follows from our formal approach, in particular from the soundness of the type and effect system,

and the correctness of planning and of verification [8].

Another feature offered by our framework is that of mapping high-level service descriptions

into more concreteλreq programs. This can be done with the help of simple model transformation

tools. Such model-driven transformation would require very little user intervention. Typically,

the user just needs to(i) make the argument passing and return values explicit, e.g. decorating

the diagram with variables, and(ii) annotate conditional branches with the proper guards.

Transforming the diagram into aλreq program can instead be performed in a completely au-

tomated way, e.g. by implementing diagram loops through recursive functions, available inλreq .

This model transformation would allow one to reuse all theλreq tools, including its static

machinery, and therefore to rapidly build a working prototype of a service-based application. As

usual, a prototype can help in the design phase, because one can perform tests on the system,

e.g. by providing as input selected data, one can observe whether the outputs are indeed the

intended ones. Inλreq , this standard testing practice can be more effective by exploiting the

call-by-contract mechanism. For instance, one can performa request with a given policyϕ

and observe the resulting plans. This makes the system consider all the services that satisfyϕ,

and the observed effect is similar to running aclassof tests. To make a concrete example, a

designer of an online bookshop can specify a policy such as “order a book without paying”

and then inspect the generated plans: the presence of viableplans could point out an unwanted

behaviour, e.g. due to an unpredicted interaction between different special offers. Standard testing

May 30, 2015 DRAFT

37

techniques are not sophisticated enough to spot such kind ofbugs. Thus, a designer may find

the λreq prototype useful to check the system correctness, since unintended plans provide him

with a clear description of the unwanted interactions between services.

Related work

Several approaches have been developed to support verification of service-oriented systems.

For example, dynamic bisimulation-based techniques have been adopted to analyse the consis-

tency between orchestration and choreography of services [21], [22], while state-space analysis

has been exploited to check correctness of service orchestration [31]. Our approach allows for

synthesizingand checking the correctness of the orchestrationstatically.

Process calculi techniques have been used to formalize Web Services standards (see e.g. [28],

[18], [35], [37], [23]). A different approach is Cook and Misra’s Orc [38], an abstract program-

ming model for structured orchestration of services. Web service authentication has been recently

modelled and analysed in [14], [15] through a process calculus enriched with cryptographic

primitives. The main difference of these approaches with ours stands on the level of abstraction.

Technically, the work of Skalka and Smith [44] is the closestto our framework. We share with

them the use of a type and effect system and that of model checking validity of effects (they

handle history-based access control). A related line of research addresses the issue of modelling

and analysing resource usage. Igarashi and Kobayashi [36] introduce a type systems to check

whether a program accesses resources according to a user-defined usage policy. Our model is less

general than the framework of [36], but we provide a static verification technique [9], while [36]

does not.

From a software engineering perspective, the advent of service-oriented applications has led to

the development of higher level modelling languages which only focus on the service interfaces

and orchestration (business) logic and abstract from the underlying programming middleware.

A well known example is provided by the Service Component Architecture (SCA) [24]. This

framework aims at simplifying implementations, by allowing designers to focus on the business

logic only while complying with existing standards. Our approach complements the SCA view

providing a full-fledged mathematical framework for designing and verifying properties of service

assemblies. It would be interesting develop a (model-transformation) mapping from our formal

framework to SCA.

May 30, 2015 DRAFT

38

Also related to our approach is the work on SRML [29], a high-level core language, inde-

pendent from the underlying programming middleware. SRML has a mathematical semantics

providing a basis for verification and offers both syntacticand behavioural service interfaces.

The logic for the specification of behavioural properties ofservices is still under development.

The interconnections between services are specified in a declarative style, but they are not driven

by the properties of a contract as it is our proposal.

Finally, there are several UML extensions, calledUML profiles, dealing with services. Here,

we mention the UML profile for BPEL [33], the UML profile for long-running transactions [50],

and the UML profile forλreq [39]. Our graphical design notation basically provides thenotion

of activity diagram for this UML profile.

Acknowledgments

We thank the anonymous referees for their insightful comments. This research has been par-

tially supported by EU-FETPI Global Computing Project IST-2005-16004 SENSORIA (Software

Engineering for Service-Oriented Overlay Computers).

REFERENCES

[1] M. Abadi and C. Fournet. Access control based on execution history. In Proc. 10th Annual Network and Distributed

System Security Symposium, 2003.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.Web Services: Concepts, Architectures and Applications. Springer, 2004.

[3] S. Anderson et al.Web Services Trust Language (WS-Trust), 2005.http://specs.xmlsoap.org/ws/2005/02/trust/WS-Trust. pdf

[4] B. Atkinson et al.Web Services Security (WS-Security), 2002. http://www.oasis-open.org .

[5] A. Banerjee and D.A. Naumann. History-based access control and secure information flow. InWorkshop on Construction

and Analysis of Safe, Secure and Interoperable Smart Cards (CASSIS), 2004.

[6] H. P. Barendregt et al. Term graph rewriting. InParallel Languages on PARLE: Parallel Architectures and Languages

Europe, 1987.

[7] M. Bartoletti, P. Degano, and G.L. Ferrari. History based access control with local policies. InProc. Foundations of

Software Science and Computation Structures (Fossacs), volume 3441 ofSpringer LNCS, 2005.

[8] M. Bartoletti, P. Degano, and G.L. Ferrari. Planning and verifying service composition. Technical Report TR-07-02, Dip.

Informatica, Univ. of Pisa, 2007.http://compass2.di.unipi.it/TR/Files/TR-07-02.pdf.g z , to appear

in Journal of Computer Security.

[9] M. Bartoletti, P. Degano, G.L. Ferrari, and R. Zunino. Types and effects for resource usage analysis. InIn Proc. Foundations

of Software Science and Computation Structures (Fossacs), 2007.

[10] Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari. Enforcing secure service composition. InProc. 18th

Computer Security Foundations Workshop (CSFW), 2005.

May 30, 2015 DRAFT

39

[11] Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari. Plansfor service composition. InWorkshop on Issues in

the Theory of Security (WITS), 2006.

[12] Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari. Security issues in service composition. InInvited talk at

(FMOODS), volume 4037 ofLecture Notes in Computer Science. Springer, 2006.

[13] Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari. Types and effects for secure service orchestration. InProc.

19th Computer Security Foundations Workshop (CSFW), 2006.

[14] K. Bhargavan, R. Corin, C. Fournet, and A.D. Gordon. Secure sessions for web services. InProc. ACM Workshop on

Secure Web Services, 2004.

[15] K. Bhargavan, C. Fournet, and A.D. Gordon. A semantics for web services authentication. InProc. ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL), 2004.

[16] B. Bloch et al. Web services business process execution language, version 2.0. Technical report, TC OASIS, 2005.

http://www.oasis-open.org .

[17] D. Booth et al. Web Service Description Language (WSDL), Version 2.0, 2006.

http://www.w3.org/TR/wsdl20-primer .

[18] M. Boreale et al. SCC: a service centered calculus. InWS-FM, volume 4184 ofSpringer LNCS, 2006.

[19] D. Box et al. Simple Object Access Protocol (SOAP) 1.1. W3C Note, 2000.http://www.w3.org/TR/soap .

[20] Roberto Bruni, Herńan Melgratti, and Ugo Montanari. Theoretical foundations for compensations in flow composition

languages. InProc. 32nd ACM SIGPLAN-SIGACT Symposium on Principles of programming languages (POPL), 2005.

[21] Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavattaro. Choreography and orchestration:

A synergic approach for system design. InInternational Conference on Service Oriented Computing (ICSOC), volume

3826 ofLNCS. Springer, 2005.

[22] Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavattaro. Choreography and orchestration

conformace for system design. InCOORDINATION, volume 4038, 2006.

[23] M. Carbone, K. Honda, and N. Yoshida. Structured global programming for communicating behaviour. InEuropean

Symposium in Programming Languages (ESOP), volume to appear, 2007.

[24] SCA Consortium. Building systems using a service oriented architecture. In White Paper. Available from www-

128.ibm.com/developerworks/library/specification/ws-sca/, 2005.

[25] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarane.The next step in web services.Communications of the

ACM, 46(10), 2003.

[26] W. Van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow patterns.Distributed and Parallel Databases,

14(1), 2003.

[27] G. Edjlali, A. Acharya, and V. Chaudhary. History-based access control for mobile code. InSecure Internet Programming,

volume 1603 ofSpringer LNCS, 1999.

[28] G.L. Ferrari, R. Guanciale, and D. Strollo. JSCL: A middleware for service coordination. InProc. FORTE, volume 4229

of Springer LNCS, 2006.

[29] Jose Louis Fiadeiro, Antonia Lopez, and Laura Bocchi. A formalapproach to service component architecture. InWS-FM

2006, volume 4184 ofLNCS. Springer, 2006.

[30] P. W. Fong. Access control by tracking shallow execution history.In IEEE Symposium on Security and Privacy, 2004.

[31] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. Model-based verification of web services. InASE. IEEE

Computer Society, 2003.

May 30, 2015 DRAFT

40

[32] Hector Garcia-Molina and Kenneth Salem. Sagas. InProc. ACM SIGMOD. ACM Press, 1987.

[33] T. Gardner and al. Uml 1.4 profile for automated business process with a mapping to the BPEL 1.0. InWhite Paper. IBM

Alpha Works, 2003.

[34] Li Gong. Inside Java 2 platform security: architecture, API design, and implementation. Addison-Wesley, 1999.

[35] C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro. SOCK:A calculus for service oriented computing. InProc.

Service-Oriented Computing (ICSOC), volume 4294 ofSpringer LNCS, 2006.

[36] A. Igarashi and N. Kobayashi. Resource usage analysis. InProc. 29th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL), 2002.

[37] A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of web services. InEuropean Symposium in

Programming Languages (ESOP), volume to appear, 2007.

[38] J. Misra. A programming model for the orchestration of web services. In 2nd International Conference on Software

Engineering and Formal Methods (SEFM 2004), 2004.

[39] C. Montangero and L. Semini. Barbed model–driven software development: A case study. Technical report, SENSORIA,

IST-2005-016004, 2007.http://www.di.unipi.it/˜monta/PcU/ttss07REP.pdf .

[40] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin.Principles of Program Analysis. Springer-Verlag, 1999.

[41] M. Papazoglou. Service-oriented computing: Concepts, characteristics and directions. InProc. Web Information Systems

Engineering (WISE), 2003.

[42] M. Papazoglou and D. Georgakopoulos. Special issue on service oriented computing.Communications of the ACM, 46(10),

2003.

[43] F.B. Schneider. Enforceable security policies.ACM Transactions on Information and System Security (TISSEC), 3(1),

2000.

[44] C. Skalka and S. Smith. History effects and verification. InProc. Asian Programming Languages Symposium (APLAS),

volume 3302 ofSpringer LNCS, 2004.

[45] M. Stal. Web services: Beyond component-based computing.Communications of the ACM, 55(10), 2002.

[46] Ioan Toma and Douglas Foxvog.Non-functional properties in Web Services. WSMO Deliverable, 2006.

[47] Vedamuthu et al.Web Services Policy Framework (WS-Policy), 2006. http://www.w3.org/TR/ws-policy .

[48] W. Vogels. Web services are not distributed objects.IEEE Internet Computing, 7(6), 2003.

[49] W3C. UDDI Technical White Paper, 2000.

[50] Martin Wirsing et al. Semantic-based development of service-oriented systems. InFormal Techniques for Networked and

Distributed Systems - FORTE 2006, volume 4229 ofLecture Notes in Computer Science. Springer, 2006.

[51] R. Yahalom, B. Klein, and Th. Beth. Trust relationships in secure systems – A distributed authentication perspective. In

Proc. IEEE Symposium on Security and Privacy, 1993.

May 30, 2015 DRAFT

41

Massimo Bartoletti received the PhD degree in Computer Science from the University of Pisa in 2005.

His research activity mainly spans over language-based security and static analysis for functional and

object-oriented languages. His current research interests include typeand effect systems and analysis and

design of core calculi for service-oriented computing.

Pierpaolo Degano has been full professor of Computer Science since 1990, and he hasbeen at the

Department of Computer Science, University of Pisa since 1993. He served as guest editor of ”Theoretical

Computer Science”, the “ACM Computing Surveys”, and “Science of Computer Programming”. He co-

founded the IFIP TC1 WG 1.7 on Theoretical Foundations of Security Analysis and Design; he is member

of the Board of Directors of the Microsoft Research - University of Trento Center for Computational and

Systems Biology. His main areas of interest are security of concurrentand mobile systems, systems

biology, semantics and concurrency, methods and tools for program verification and evaluation, and programming tools.

Gian Luigi Ferrari received the PhD degree in computer science in 1989 from the University of Pisa,

where he is an Associate Professor at the Department of Computer Science. His research interests include

formal specification and verification of concurrent and mobile systems, programming languages for global

computing, tool support for mobile systems and theoretical aspects of distributed computing.

Roberto Zunino received the PhD degree in computer science from the University of Pisa in 2006.

His main research topics include computer security, cryptographic protocols, systems verification and

static analysis. He has worked on automatic verification techniques and on the algebraic properties of

cryptographic primitives. Other research interests are language-based security and type systems.

May 30, 2015 DRAFT

